
PSoC 4 TRM

PSoC 4100M/4200M Family

PSoC® 4 Architecture
Technical Reference Manual (TRM)

Document No. 001-95223 Rev. *B

July 29, 2015

Cypress Semiconductor
198 Champion Court

San Jose, CA 95134-1709

Phone (USA): 800.858.1810
Phone (Intnl): 408.943.2600

www.cypress.com

http://www.cypress.com

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

Copyrights

License

© 2014-2015, Cypress Semiconductor Corporation. All rights reserved. This software, and associated documentation or
materials (Materials) belong to Cypress Semiconductor Corporation (Cypress) and may be protected by and subject to world-
wide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Unless
otherwise specified in a separate license agreement between you and Cypress, you agree to treat Materials like any other
copyrighted item.

You agree to treat Materials as confidential and will not disclose or use Materials without written authorization by Cypress.
You agree to comply with any Nondisclosure Agreements between you and Cypress.

If Material includes items that may be subject to third party license, you agree to comply with such licenses.

Copyrights

Copyright © 2014-2015 Cypress Semiconductor Corporation. All rights reserved.

PSoC and CapSense are registered trademarks, and PSoC Creator is a trademark of Cypress Semiconductor Corporation
(Cypress), along with Cypress® and Cypress Semiconductor™. All other trademarks or registered trademarks referenced
herein are the property of their respective owners.

Purchase of I2C components from Cypress or one of its sublicensed Associated Companies conveys a license under the Phil-

ips I2C Patent Rights to use these components in an I2C system, provided that the system conforms to the I2C Standard
Specification as defined by Philips. As from October 1st, 2006 Philips Semiconductors has a new trade name - NXP Semicon-
ductors.

The information in this document is subject to change without notice and should not be construed as a commitment by
Cypress. While reasonable precautions have been taken, Cypress assumes no responsibility for any errors that may appear
in this document. No part of this document may be copied or reproduced in any form or by any means without the prior written
consent of Cypress. Made in the U.S.A.

Disclaimer

CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PAR-
TICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein.
Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress
does not authorize its products for use as critical components in life-support systems where a malfunction or failure may rea-
sonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems appli-
cation implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Flash Code Protection

Cypress products meet the specifications contained in their particular Cypress Datasheets. Cypress believes that its family of
PSoC products is one of the most secure families of its kind on the market today, regardless of how they are used. There may
be methods that can breach the code protection features. Any of these methods, to our knowledge, would be dishonest and
possibly illegal. Neither Cypress nor any other semiconductor manufacturer can guarantee the security of their code. Code
protection does not mean that we are guaranteeing the product as “unbreakable.”

Cypress is willing to work with the customer who is concerned about the integrity of their code. Code protection is constantly
evolving. We at Cypress are committed to continuously improving the code protection features of our products.

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B 3

Contents Overview

Section A: Overview 15

1. Introduction ... 17

2. Getting Started .. 23

3. Document Construction ... 25

Section B: CPU System 29
4. Cortex-M0 CPU ... 31

5. DMA Controller Modes... 37

6. Interrupts .. 51

Section C: System-Wide Resources 61
7. I/O System .. 63

8. Clocking System.. 73

9. Power Supply and Monitoring .. 81

10. Chip Operational Modes .. 85

11. Power Modes .. 87

12. Watchdog Timer .. 91

13. Reset System .. 95

14. Device Security ... 99

Section D: Digital System 101

15. Serial Communications Block (SCB) .. 103

16. Universal Digital Blocks (UDB) ... 141

17. Controller Area Network (CAN) .. 179

18. Timer, Counter, and PWM .. 195

Section E: Analog System 215

19. Precision Reference .. 217

20. SAR ADC .. 221

21. Low-Power Comparator ... 251

22. Continuous Time Block mini (CTBm) .. 257

23. LCD Direct Drive ... 265

24. CapSense ... 277

25. Temperature Sensor .. 287

Section F: Program and Debug 291

4 PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

Contents Overview

26. Program and Debug Interface.. 293

27. Nonvolatile Memory Programming ... 299

Glossary 313

Index 329

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B 5

Contents

Section A: Overview 15

Document Revision History ..15

1. Introduction 17
1.1 Top Level Architecture..17
1.2 Features..19
1.3 CPU System ...19

1.3.1 Processor...19
1.3.2 Interrupt Controller ...19
1.3.3 Direct Memory Access ...20

1.4 Memory...20
1.4.1 Flash ..20
1.4.2 SRAM...20

1.5 System-Wide Resources ..20
1.5.1 Clocking System ..20
1.5.2 Power System..20
1.5.3 GPIO..20

1.6 Programmable Digital ...20
1.7 Fixed-Function Digital ...20

1.7.1 Timer/Counter/PWM Block...20
1.7.2 Serial Communication Blocks ..21
1.7.3 Controller Area Network...21

1.8 Analog System..21
1.8.1 SAR ADC...21
1.8.2 Continuous Time Block mini (CTBm)...21
1.8.3 Low-Power Comparators ...21

1.9 Special Function Peripherals ..21
1.9.1 LCD Segment Drive ...21
1.9.2 CapSense ..21

1.10 Program and Debug ...21
1.11 Device Feature Summary ...22

2. Getting Started 23
2.1 Support ...23
2.2 Product Upgrades...23
2.3 Development Kits..23
2.4 Application Notes..23

3. Document Construction 25

3.1 Major Sections ..25
3.2 Documentation Conventions...25

3.2.1 Register Conventions...25
3.2.2 Numeric Naming ..25

6 PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

Contents

3.2.3 Units of Measure..26
3.2.4 Acronyms...26

Section B: CPU System 29

Top Level Architecture ...29

4. Cortex-M0 CPU 31
4.1 Features ...31
4.2 Block Diagram ..32
4.3 How It Works ..32
4.4 Address Map ..32
4.5 Registers ..33
4.6 Operating Modes..34
4.7 Instruction Set...34

4.7.1 Address Alignment ..35
4.7.2 Memory Endianness..35

4.8 Systick Timer ..35
4.9 Debug...35

5. DMA Controller Modes 37

5.1 Block Diagram Description ...37
5.1.1 Trigger Sources and Multiplexing ..38
5.1.2 Pending Triggers ...40
5.1.3 Output Triggers..40
5.1.4 Channel Prioritization ..40
5.1.5 Data Transfer Engine...40

5.2 Descriptors ...41
5.2.1 Address Configuration ...41
5.2.2 Transfer Size ...42
5.2.3 Descriptor Chaining ...43
5.2.4 Transfer Mode ...43
5.2.5 Operation and Timing ..47

5.3 Register List..49

6. Interrupts 51

6.1 Features ...51
6.2 How It Works ..51
6.3 Interrupts and Exceptions - Operation..52

6.3.1 Interrupt/Exception Handling in PSoC 4 ..52
6.3.2 Level and Pulse Interrupts ...52
6.3.3 Exception Vector Table ..53

6.4 Exception Sources..53
6.4.1 Reset Exception ..53
6.4.2 Non-Maskable Interrupt (NMI) Exception ..54
6.4.3 HardFault Exception ..54
6.4.4 Supervisor Call (SVCall) Exception ...54
6.4.5 PendSV Exception...54
6.4.6 SysTick Exception ...54

6.5 Interrupt Sources ..55
6.6 Exception Priority..56
6.7 Enabling and Disabling Interrupts...56
6.8 Exception States...57

6.8.1 Pending Exceptions...57
6.9 Stack Usage for Exceptions ...58

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B 7

Contents

6.10 Interrupts and Low-Power Modes...58
6.11 Exception - Initialization and Configuration...58
6.12 Registers...59
6.13 Associated Documents ...59

Section C: System-Wide Resources 61

Top Level Architecture ...61

7. I/O System 63
7.1 Features..63
7.2 GPIO Interface Overview..63
7.3 I/O Cell Architecture..64

7.3.1 Digital Input Buffer ...65
7.3.2 Digital Output Driver...65

7.4 GPIO-OVT Pin ..67
7.5 High-Speed I/O Matrix ..68
7.6 I/O State on Power Up..69
7.7 Behavior in Low-Power Modes ...69
7.8 Input and Output Synchronization ..69
7.9 Interrupt ..69
7.10 Peripheral Connections ..71

7.10.1 Firmware Controlled GPIO...71
7.10.2 Analog I/O ..71
7.10.3 LCD Drive ..71
7.10.4 CapSense ..71
7.10.5 Serial Communication Block (SCB) ...71

7.11 Port Restrictions ...71
7.12 Registers...72

8. Clocking System 73
8.1 Block Diagram ..73
8.2 Clock Sources...74

8.2.1 Internal Main Oscillator ..74
8.2.2 Internal Low-speed Oscillator ..76
8.2.3 External Clock (EXTCLK) ..76
8.2.4 Watch Crystal Oscillator (WCO)...76

8.3 Clock Distribution..77
8.3.1 HFCLK Input Selection ..77
8.3.2 LFCLK Input Selection ...77
8.3.3 SYSCLK Prescaler Configuration ..77
8.3.4 Peripheral Clock Divider Configuration ..77

8.4 Low-Power Mode Operation ...79
8.5 Register List..80

9. Power Supply and Monitoring 81
9.1 Block Diagram ..81
9.2 How It Works ..82

9.2.1 Regulator Summary ...82
9.3 Voltage Monitoring..82

9.3.1 Power-On-Reset (POR) ...82
9.4 Register List ...83

10. Chip Operational Modes 85

10.1 Boot ..85

8 PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

Contents

10.2 User ..85
10.3 Privileged..85
10.4 Debug...85

11. Power Modes 87

11.1 Active Mode..88
11.2 Sleep Mode ..88
11.3 Deep-Sleep Mode...88
11.4 Hibernate Mode ..89
11.5 Stop Mode ..89
11.6 Power Mode Summary ...89
11.7 Low-Power Mode Entry and Exit ..90
11.8 Register List..90

12. Watchdog Timer 91
12.1 Features ...91
12.2 Block Diagram ..91
12.3 How It Works ..92

12.3.1 Enabling and Disabling WDT...93
12.3.2 WDT Operating Modes ...93
12.3.3 WDT Interrupts and Low-Power Modes...94
12.3.4 WDT Reset Mode ..94

12.4 Register List ...94

13. Reset System 95
13.1 Reset Sources..95

13.1.1 Power-on Reset...95
13.1.2 Brownout Reset ...95
13.1.3 Watchdog Reset ..95
13.1.4 Software Initiated Reset...96
13.1.5 External Reset ...96
13.1.6 Protection Fault Reset ...96
13.1.7 Hibernate Wakeup Reset...96
13.1.8 Stop Wakeup Reset ...96

13.2 Identifying Reset Sources...96
13.3 Register List..97

14. Device Security 99

14.1 Features ...99
14.2 How It Works ..99

14.2.1 Device Security..99
14.2.2 Flash Security ..100

Section D: Digital System 101

Top Level Architecture ...101

15. Serial Communications Block (SCB) 103
15.1 Features ...103
15.2 Serial Peripheral Interface (SPI)...103

15.2.1 Features ..103
15.2.2 General Description...104
15.2.3 SPI Modes of Operation ..104
15.2.4 Using SPI Master to Clock Slave...109
15.2.5 Easy SPI Protocol..109

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B 9

Contents

15.2.6 SPI Registers ... 111
15.2.7 SPI Interrupts ... 111
15.2.8 Enabling and Initializing SPI ..112
15.2.9 Internally and Externally Clocked SPI Operations ...113

15.3 UART..115
15.3.1 Features...115
15.3.2 General Description ...116
15.3.3 UART Modes of Operation...116
15.3.4 UART Registers ...122
15.3.5 UART Interrupts ...122
15.3.6 Enabling and Initializing UART ..122

15.4 Inter Integrated Circuit (I2C) ...124
15.4.1 Features...124
15.4.2 General Description ...124
15.4.3 Terms and Definitions ..124
15.4.4 I2C Modes of Operation...125
15.4.5 Easy I2C (EZI2C) Protocol...127
15.4.6 I2C Registers ...128
15.4.7 I2C Interrupts ...129
15.4.8 Enabling and Initializing the I2C...129
15.4.9 Internal and External Clock Operation in I2C...130
15.4.10 Wake up from Sleep ..132
15.4.11 Master Mode Transfer Examples...133
15.4.12 Slave Mode Transfer Examples...135
15.4.13 EZ Slave Mode Transfer Example ...137
15.4.14 Multi-Master Mode Transfer Example ..139

16. Universal Digital Blocks (UDB) 141

16.1 Features..141
16.2 How It Works ..142

16.2.1 PLDs ..142
16.2.2 Datapath ..144
16.2.3 Status and Control Module...160
16.2.4 Reset and Clock Control Module ...166
16.2.5 UDB Addressing ..173
16.2.6 System Bus Access Coherency...173

16.3 Port Adapter Block..174
16.3.1 PA Data Input Logic ...174
16.3.2 PA Port Pin Clock Multiplexer Logic...175
16.3.3 PA Data Output Logic ..175
16.3.4 PA Output Enable Logic...176
16.3.5 PA Clock Multiplexer ..177
16.3.6 PA Reset Multiplexer..178

17. Controller Area Network (CAN) 179

17.1 Features..179
17.2 Block Diagram ..180
17.3 CAN Message Frames ...180

17.3.1 Data Frames ..180
17.3.2 Remote Frame...181
17.3.3 Error Frame..181
17.3.4 Overload Frame...181

17.4 Transmitting Messages in CAN ..182

10 PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

Contents

17.4.1 Message Arbitration...182
17.4.2 Message Transmit Process ...182
17.4.3 Message Abort ..183
17.4.4 Single Shot Transmission ..183
17.4.5 Transmitting Extended Data Frames ...183

17.5 Receiving Messages in CAN..183
17.5.1 Message Receive Process ..184
17.5.2 Acceptance Filter ...184
17.5.3 DeviceNet Filtering ..185
17.5.4 Filtering of Extended Data Frames..186
17.5.5 Receiver Message Buffer Linking ..186

17.6 Remote Frames..187
17.6.1 Transmitting a Remote Frame by the Requesting Node187
17.6.2 Receiving a Remote Frame...187
17.6.3 RTR Auto Reply...188
17.6.4 Remote Frames in Extended Format ..188

17.7 Time-Triggered CAN ..188
17.7.1 TTCAN Timer...188

17.8 Bit Time Configuration ..188
17.8.1 Allowable Bit Rates and System Clock (SYSCLK) ..188
17.8.2 Setting Bit Rate TSEG1 and TSEG2 ...189

17.9 Error Handling and Interrupts in CAN...190
17.9.1 Types of Errors ..190
17.9.2 Error Capture Register ..191
17.9.3 Error States in CAN ...191
17.9.4 Interrupt Sources in CAN...191

17.10 Operating Modes in CAN..193
17.10.1 Run/Stop Mode..193
17.10.2 Listen Only Mode...193
17.10.3 Loopback Test Mode ...193

18. Timer, Counter, and PWM 195

18.1 Features ...195
18.2 Block Diagram ..196

18.2.1 Enabling and Disabling Counter in TCPWM Block..196
18.2.2 Clocking...196
18.2.3 Events Based on Trigger Inputs...197
18.2.4 Output Signals ...197
18.2.5 Power Modes...199

18.3 Modes of Operation ..199
18.3.1 Timer Mode..200
18.3.2 Capture Mode..202
18.3.3 Quadrature Decoder Mode..204
18.3.4 Pulse Width Modulation Mode...207
18.3.5 Pulse Width Modulation with Dead Time Mode ...210
18.3.6 Pulse Width Modulation Pseudo-Random Mode...212

18.4 TCPWM Registers ...214

Section E: Analog System 215

Top Level Architecture ...215

19. Precision Reference 217
19.1 Features ...217

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B 11

Contents

19.2 Block Diagram ..217
19.3 How it Works...218

19.3.1 Precision Bandgap...218
19.3.2 Trim Buffer ...218
19.3.3 Low-Power Buffers...218
19.3.4 Current Mirrors...219
19.3.5 Temperature-Controlled Voltage Generator ...219
19.3.6 Temperature-Controlled Current Generator ...219

19.4 Configuration ..219

20. SAR ADC 221

20.1 Features..221
20.2 Block Diagram ..222
20.3 How it Works...222

20.3.1 SAR ADC Core ..222
20.3.2 SARMUX..225
20.3.3 SARREF ..231
20.3.4 SARSEQ..232
20.3.5 Interrupt..236
20.3.6 Trigger..237
20.3.7 SAR ADC Status ..238
20.3.8 Low-Power Mode ...238
20.3.9 System Operation ..238
20.3.10 Register Mode..239
20.3.11 DSI Mode...242
20.3.12 Analog Routing Configuration Example ...245
20.3.13 Temperature Sensor Configuration ..248

20.4 Registers...249

21. Low-Power Comparator 251

21.1 Features..251
21.2 Block Diagram ..251
21.3 How It Works ..252

21.3.1 Input Configuration...252
21.3.2 Output and Interrupt Configuration ..253
21.3.3 Power Mode and Speed Configuration ..254
21.3.4 Hysteresis ..255
21.3.5 Wakeup from Low-Power Modes...255
21.3.6 Comparator Clock ..255
21.3.7 Offset Trim ...255

21.4 Register Summary ...256

22. Continuous Time Block mini (CTBm) 257
22.1 Features..257
22.2 Block Diagram ..257
22.3 How It Works ..258

22.3.1 Power Mode Configuration ..258
22.3.2 Output Strength Configuration ...259
22.3.3 Compensation..260
22.3.4 Switch Control..260

22.4 Register Summary ..264

23. LCD Direct Drive 265
23.1 Features..265

12 PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

Contents

23.2 LCD Segment Drive Overview..265
23.2.1 Drive Modes ..266
23.2.2 Recommended Usage of Drive Modes..274
23.2.3 Digital Contrast Control..274

23.3 Block Diagram ..275
23.3.1 How it Works..275
23.3.2 High-Speed and Low-Speed Master Generators...275
23.3.3 Multiplexer and LCD Pin Logic ..276
23.3.4 Display Data Registers ..276

23.4 Register List ...276

24. CapSense 277

24.1 Features ...277
24.2 Block Diagram ..277
24.3 How It Works ..278
24.4 CapSense CSD Sensing ..279

24.4.1 GPIO Cell Capacitance to Current Converter..279
24.4.2 CapSense Clock Generator...281
24.4.3 Sigma Delta Converter ..281

24.5 CapSense CSD Shielding ..282
24.5.1 CMOD Precharge ..283

24.6 General-Purpose Resources: IDACs and Comparator...284
24.7 Register List..285

25. Temperature Sensor 287
25.1 Features ...287
25.2 How it Works ..287
25.3 Temperature Sensor Configuration ..288
25.4 Algorithm ..289
25.5 Registers ..290

Section F: Program and Debug 291
Top Level Architecture ...291

26. Program and Debug Interface 293

26.1 Features ...293
26.2 Functional Description ..293
26.3 Serial Wire Debug (SWD) Interface..294

26.3.1 SWD Timing Details...295
26.3.2 ACK Details ...295
26.3.3 Turnaround (Trn) Period Details ..295

26.4 Cortex-M0 Debug and Access Port (DAP) ...295
26.4.1 Debug Port (DP) Registers..296
26.4.2 Access Port (AP) Registers ..296

26.5 Programming the PSoC 4 Device...296
26.5.1 SWD Port Acquisition ..296
26.5.2 SWD Programming Mode Entry ..297
26.5.3 SWD Programming Routines Executions..297

26.6 PSoC 4 SWD Debug Interface ...297
26.6.1 Debug Control and Configuration Registers ..297
26.6.2 Breakpoint Unit (BPU) ...298
26.6.3 Data Watchpoint (DWT)...298
26.6.4 Debugging the PSoC 4 Device..298

26.7 Registers ..298

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B 13

Contents

27. Nonvolatile Memory Programming 299

27.1 Features..299
27.2 Functional Description ..299
27.3 System Call Implementation ...300
27.4 Blocking and Non-Blocking System Calls...300

27.4.1 Performing a System Call ..300
27.5 System Calls...301

27.5.1 Silicon ID..301
27.5.2 Load Flash Bytes ...302
27.5.3 Write Row ..303
27.5.4 Program Row...304
27.5.5 Erase All...304
27.5.6 Checksum..305
27.5.7 Write Protection ...305
27.5.8 Non-Blocking Write Row ..306
27.5.9 Non-Blocking Program Row...307
27.5.10 Resume Non-Blocking ...308

27.6 System Call Status ...308
27.7 Non-Blocking System Call Pseudo Code ...309

Glossary 313

Index 329

14 PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

Contents

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B 15

Section A: Overview

This section encompasses the following chapters:

■ Introduction chapter on page 17

■ Getting Started chapter on page 23

■ Document Construction chapter on page 25

Document Revision History

Revision Issue Date
Origin of
Change

Description of Change

** November 25, 2014 RJVB Initial version of PSoC 4200M TRM

*A April 22, 2015 RJVB

Updated the document to include the PSoC 4100M device

Updated the Introduction chapter

Corrected the SAR ADC sampling rate

*B July 29, 2015 RJVB

Added I/O bank details in the Introduction and I/O Systems chapters

Added PSoC 4100M and PSoC 4200M comparison table in the Introduction chapter

Added IMO frequency change algorithm in the Clocking System chapter

Added note on mapping the first three interrupts to SROM in the Interrupts chapter

16 PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B 17

1. Introduction

PSoC® 4 is a programmable embedded system controller with an ARM® Cortex®-M0 CPU. It combines programmable
analog, programmable interconnect, user-programmable digital logic, and commonly used fixed-function peripherals with a
high-performance ARM Cortex-M0 subsystem.

The PSoC 4100M/4200M is an enhanced version of the PSoC 4100/4200 family and is upward-compatible with larger
members of PSoC 4.

PSoC 4 devices have these characteristics:

■ High-performance, 32-bit single-cycle Cortex-M0 CPU core

■ Fixed-function and configurable digital blocks

■ Programmable digital logic

■ High-performance analog system

■ Flexible and programmable interconnect

■ Capacitive touch sensing (CapSense®)

■ Low-power operating modes including Sleep, Deep-Sleep, Hibernate, and Stop modes

This document describes each functional block of the PSoC 4100M/4200M device in detail. This information will help
designers to create system-level designs.

1.1 Top Level Architecture
Figure 1-1 shows the major components of the PSoC 4100M architecture. Figure 1-2 shows the major components of the
PSoC 4200M architecture.

18 PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

Introduction

Figure 1-1. PSoC 4100M Family Block Diagram

PSoC4100M

32-bit

AHB-Lite

Deep Sleep
Hibernate

Active/Sleep

CPU Subsystem

SRAM
16 KB

SRAM Controller

ROM
8 KB

ROM Controller

FLASH
128 KB

Read Accelerator

SPCIFSWD/TC

NVIC, IRQMX

Cortex
M0

24 MHz
FAST MUL

System Interconnect (Multi Layer AHB)

DataWire/
DMA

Initiator/MMIO

IO Subsystem

49x GPIO, 6x GPIO_OVT

IO
S

S
 G

P
IO

 (8
x

po
rt

s)

Peripherals

System Resources

Power

Clock

WDT
ILO

Reset

Clock Control

DFT Logic
Test

IMO

DFT Analog

Sleep Control

PWRSYS
REF
POR LVD

NVLatches

BOD

WIC

Reset Control
XRES

Peripheral Interconnect (MMIO)PCLK

8x
 T

C
P

W
M

LC
D

4x
 S

C
B

-I
2C

/S
P

I/U
A

R
T

2x
 L

P
 C

om
pa

ra
to

r

2x
 C

ap
se

ns
e

Port Interface & Digital System Interconnect (DSI)

Power Modes

SMX

SAR ADC
(12-bit)

x1

Programmable
Analog

CTBm
x22x OpAmp

W
C

O

High Speed I/O Matrix

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B 19

Introduction

Figure 1-2. PSoC 4200M Family Block Diagram

1.2 Features
The PSoC 4100M/4200M family has these major
components:

■ 32-bit Cortex-M0 CPU with single-cycle multiply,
delivering up to 43 DMIPS at 48 MHz in PSoC 4200M
and 21 DMIPS at 24 MHz in PSoC 4100M

■ Up to 128 KB flash and 16 KB SRAM

■ Direct memory access (DMA)

■ Eight center-aligned pulse-width modulators (PWMs)
with complementary, dead-band programmable outputs

■ Twelve-bit SAR ADC (with sampling rate of 1 Msps in
PSoC 4200M and 806 ksps in PSoC 4100M) with
hardware sequencing for multiple channels

■ Up to four opamps that can be used in comparator mode
or as the input buffer for SAR ADC

■ Two low-power comparators

■ Four serial communication blocks (SCB) that can work
as SPI, UART, I2C, and local interconnect network (LIN)
slave serial communication channels

■ Two controller area network (CAN) blocks in PSoC
4200M

■ Up to four programmable logic blocks, known as
universal digital blocks (UDBs) in PSoC 4200M

■ CapSense

■ Segment LCD direct drive

■ Low-power operating modes: Sleep, Deep-Sleep,
Hibernate, and Stop

■ Programming and debugging system through serial wire
debug (SWD)

■ Fully supported by PSoC Creator™ IDE tool

1.3 CPU System

1.3.1 Processor

The heart of the PSoC 4 is a 32-bit Cortex-M0 CPU core
running up to 48 MHz for PSoC 4200M and 24 MHz for
PSoC 4100M. It is optimized for low-power operation with
extensive clock gating. It uses 16-bit instructions and
executes a subset of the Thumb-2 instruction set. This
enables fully compatible binary upward migration of the
code to higher performance processors such as Cortex M3
and M4.

The PSoC 4 includes a hardware multiplier that provides a
32-bit result in one cycle.

1.3.2 Interrupt Controller

The CPU subsystem of PSoC 4 includes a nested vectored

Peripherals

PSoC 4200M

32-bit

AHB-Lite

CPU Subsystem

Peripheral Interconnect (MMIO)

SRAM
16 kB

SRAM Controller

ROM
8 kB

ROM Controller

FLASH
128 kB

Read Accelerator

SPCIF

Programmable
Digital

UDB UDB

IO Subsystem

CTBm
2x OpAmp

x2

SAR ADC
(12-bit)

x1

Programmable
Analog

IO
S

S
 G

P
IO

 (
8x

 p
o

rt
s)

43x GPIO, 14x GPIO_OVT

4
x

S
C

B
-I2

C
/S

P
I/U

A
R

T

Deep Sleep
Hibernate

Active/Sleep

System Resources

Power

Clock

WDT
ILO

Reset

Clock Control

DFT Logic
Test

IMO

DFT Analog

Sleep Control

PWRSYS
REF
POR LVD

NVLatches

BOD

WIC

Reset Control
XRES

PCLK

System Interconnect (Single Layer AHB)

SWD/TC

NVIC, IRQMX

Cortex
M0

48 MHz
FAST MUL

2x
 C

ap
S

en
se

2x
 L

P
 C

om
p

ar
at

o
r

SMX

L
C

D

Port Interface & Digital System Interconnect (DSI)

High Speed I/O Matrix

x4

...

Power Modes

DataWire/
DMA

Initiator/MMIO

2x
 C

A
N

8x
 T

C
P

W
M

W
C

O

20 PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

Introduction

interrupt controller (NVIC) with 32 interrupt inputs and a
wakeup interrupt controller (WIC), which can wake the
processor from Deep-Sleep mode. The Cortex-M0 CPU of
PSoC 4 implements a non-maskable interrupt (NMI) input,
which can be tied to digital routing for general-purpose use.

1.3.3 Direct Memory Access

The DMA engine is capable of independent data transfers
anywhere within the memory map (peripheral-to-peripheral
and peripheral-to/from-memory) with a programmable
descriptor chain.

1.4 Memory
The PSoC 4 memory subsystem consists of flash and
SRAM. A supervisory ROM, containing boot and
configuration routines, is also present.

1.4.1 Flash

The PSoC 4 has a flash module with a flash accelerator
tightly coupled to the CPU to improve average access times
from the flash block. The flash accelerator delivers
85 percent of single-cycle SRAM access performance on an
average.

1.4.2 SRAM

The PSoC 4 provides SRAM, which is retained during
Hibernate mode.

1.5 System-Wide Resources

1.5.1 Clocking System

The clocking system for the PSoC 4 device consists of the
internal main oscillator (IMO) and internal low-speed
oscillator (ILO) as internal clocks and has provision for an
external clock and watch crystal oscillator (WCO).

The IMO with an accuracy of ±2 percent is the primary
source of internal clocking in the PSoC 4. The default IMO
frequency is 24 MHz and it can be adjusted between 3 MHz
and 48 MHz in steps of 1 MHz. Multiple clock derivatives are
generated from the main clock frequency to meet various
application needs.

The ILO is a low-power, less accurate oscillator and is used
as a source for LFCLK, to generate clocks for peripheral
operation in Deep-Sleep mode. Its clock frequency is 32 kHz
with ±60 percent accuracy.

An external clock source ranging from 0 MHz to 48 MHz can
be pulled in to generate the clock derivatives for the PSoC 4
functional blocks instead of the IMO.

The WCO is used as a source for LFCLK. WCO is used to
accurately maintain the time interval during Deep Sleep
mode. Similar to the ILO, WCO is also available in all
modes, except Hibernate and Stop modes.

1.5.2 Power System

PSoC 4 provides multiple power supply domains – VDDD to
power digital section, VDDA for noise isolation of analog
section, and VDDIO to allow separate voltage levels for one
bank of I/Os. VDDD and VDDA should be shorted externally,
whereas VDDIO can be independently controlled.

PSoC 4 has four low-power modes – Sleep, Deep-Sleep,
Hibernate, and Stop – in addition to the default Active mode.

In Active mode, the CPU runs with all the logic powered. In
Sleep mode, the CPU is powered off with all other
peripherals functional. In Deep-Sleep mode, the CPU,
SRAM, and high-speed logic are in retention; the main
system clock is off while the low-frequency clock is on and
the low-frequency peripherals are in operation. In Hibernate
mode, even the low-frequency clock is off and low-frequency
peripherals stop operating.

Multiple internal regulators are available in the system to
support power supply schemes in different power modes.

1.5.3 GPIO

Every GPIO in PSoC 4 has the following characteristics:

■ Eight drive strength modes

■ Individual control of input and output disables

■ Hold mode for latching previous state

■ Selectable slew rates

■ Interrupt generation – edge triggered

■ CapSense and LCD drive support

PSoC 4100M/4200M also has one over-voltage tolerant port
(Port 6), which enable I2C Fast Mode power down
specification compliance and has the ability to connect to
higher voltage buses while operating at lower VDD.

The pins are organized in a port of 8-bit width. A high-speed
I/O matrix is used to multiplex between various signals that
may connect to an I/O pin. Pin locations for fixed-function
peripherals are also fixed.

1.6 Programmable Digital
The PSoC 4200M has up to four UDBs. Each UDB contains
structured data-path logic and uncommitted PLD logic with
flexible interconnect. The UDB array provides a switched
routing fabric called the digital signal interconnect (DSI). The
DSI allows routing of signals from peripherals and ports to
and within the UDBs.

The UDB arrays in PSoC 4200M enable custom logic or
additional timers/PWMs and communication interfaces such
as I2C, SPI, I2S, and UART.

1.7 Fixed-Function Digital

1.7.1 Timer/Counter/PWM Block

The Timer/Counter/PWM block consists of eight 16-bit
counters with user-programmable period length. The
functionality of these counters can be synchronized. Each

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B 21

Introduction

block has a capture register, period register, and compare
register. The block supports complementary, dead-band
programmable outputs. It also has a kill input to force
outputs to a predetermined state. Other features of the block
include center-aligned PWM, clock prescaling, pseudo
random PWM, and quadrature decoding.

1.7.2 Serial Communication Blocks

The PSoC 4100M/4200M has four SCBs. Each SCB can
implement a serial communication interface as I2C, UART,
local interconnect network (LIN) slave, or SPI.

The features of each SCB include:

■ Standard I2C multi-master and slave function

■ Standard SPI master and slave function with Motorola,
Texas Instruments, and National (MicroWire) mode

■ Standard UART transmitter and receiver function with
SmartCard reader (ISO7816), IrDA protocol, and LIN

■ Standard LIN slave with LIN v1.3 and LIN v2.1/2.2
specification compliance

■ EZ function mode support for SPI and I2C with 32-byte
buffer

1.7.3 Controller Area Network

Two CAN blocks are provided in PSoC 4200M, which
support CAN 2.0A and 2.0B. These blocks have 16 receive
buffers each with its own message filter, as well as eight
transmit buffers. The PHY interface supports the industry
standard Philips CAN PHY.

1.8 Analog System

1.8.1 SAR ADC

PSoC 4200M has a configurable 12-bit 1-Msps SAR ADC
and PSoC 4100M has a similar 12-bit SAR ADC with
806 ksps.

The ADC provides the choice of three internal voltage
references (VDDA, VDDA/2, and VREF) and an external
reference through a GPIO pin. The SAR is connected to a
fixed set of pins through an 8-input sequencer. The
sequencer can buffer each channel data to reduce CPU
interrupt service requirements.

1.8.2 Continuous Time Block mini
(CTBm)

The CTBm block provides continuous time functionality at
the entry and exit points of the analog subsystem. The
CTBm has two highly configurable and high-performance
opamps with a switch routing matrix. The opamps can also
work in comparator mode. PSoC 4100M/4200M has two
such CTBm blocks.

The block allows open-loop opamp, linear buffer, and
comparator functions to be performed without external
components. PGAs, voltage buffers, filters, and trans-
impedance amplifiers can be realized with external

components used. CTBm block can work in Active, Sleep,
and Deep-Sleep modes.

1.8.3 Low-Power Comparators

The PSoC 4100M/4200M has a pair of low-power
comparators, which can operate in Deep-Sleep and
Hibernate modes. This allows the CPU and other system
blocks to be disabled while retaining the ability to monitor
external voltage levels during low-power modes. Two input
voltages can both come from pins, or one from an internal
signal through the AMUXBUS.

1.9 Special Function Peripherals

1.9.1 LCD Segment Drive

The PSoC 4100M/4200M has an LCD controller, which can
drive up to four commons and every GPIO can be
configured to drive common or segment. It uses full digital
methods (digital correlation and PWM) to drive the LCD
segments, and does not require generation of internal LCD
voltages.

1.9.2 CapSense

PSoC 4 devices have the CapSense feature, which allows
you to use the capacitive properties of your fingers to toggle
buttons, sliders, and wheels. CapSense functionality is
supported on all GPIO pins in PSoC 4 through a CapSense
Sigma-Delta (CSD) block. The CSD also provides
waterproofing capability. The PSoC 4100M/4200M device
has two such CapSense blocks.

1.9.2.1 IDACs and Comparator

The CapSense block has two IDACs and a comparator with
a 1.2-V reference, which can be used for general purposes,
if CapSense is not used. PSoC 4100M/4200M has four
IDACs and two comparators for general-purpose use.
These are part of the two CapSense blocks.

1.10 Program and Debug
PSoC 4 devices support programming and debugging
features of the device via the on-chip SWD interface. The
PSoC Creator IDE provides fully integrated programming
and debugging support. The SWD interface is also fully
compatible with industry standard third-party tools.

22 PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

Introduction

1.11 Device Feature Summary
Table 1-1 shows the PSoC 4100M/4200M device summary.

Table 1-1. PSoC 4100M/4200M Device Summary

Feature PSoC 4100M PSoC 4200M

Maximum CPU Frequency 24 MHz 48 MHz

Flash 32 KB – 128 KB 32 KB – 128 KB

SRAM 4 KB – 16 KB 4 KB – 16 KB

GPIOs (max) 55 55

CapSense Available Available

LCD Driver Available Available

Timer, Counter, PWM (TCPWM) 8 8

Serial Communication Block (SCB) 4 4

Universal Digital Block (UDB) Not Available 4

IDAC (part of CapSense) 4 4

Opamp 4 4

Comparator 2 2

ADC 12-bit SAR, 806 ksps 12-bit SAR, 1 Msps

Direct Memory Access (DMA) Available Available

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B 23

2. Getting Started

2.1 Support

Free support for PSoC® 4 products is available online at www.cypress.com/psoc4. Resources include training seminars,
discussion forums, application notes, PSoC consultants, CRM technical support email, knowledge base, and application
support engineers.

For application assistance, visit www.cypress.com/support/ or call 1-800-541-4736.

2.2 Product Upgrades

Cypress provides scheduled upgrades and version enhancements for PSoC Creator free of charge. Upgrades are available
from your distributor on DVD-ROM; you can also download them directly from www.cypress.com/psoccreator. Critical updates
to system documentation are also provided in the Documentation section.

2.3 Development Kits

Development kits are available from Digi-Key, Avnet, Arrow, and Future. The Cypress Online Store contains development kits,
C compilers, and the accessories you need to successfully develop PSoC projects. Visit the Cypress Online Store website at
www.cypress.com/cypress-store. Under Products, click Programmable System-on-Chip to view a list of available items.

2.4 Application Notes

Refer to application note AN79953 - Getting Started with PSoC 4 for additional information on PSoC 4 device capabilities and
to quickly create a simple PSoC application using PSoC Creator and PSoC 4 development kits.

http://www.cypress.com/psoc4
http://www.cypress.com/support/
http://www.cypress.com/psoccreator
http://www.cypress.com/cypress-store
http://www.cypress.com/?rID=78695

24 PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

Getting Started

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B 25

3. Document Construction

This document includes the following sections:

■ Section B: CPU System on page 29

■ Section C: System-Wide Resources on page 61

■ Section D: Digital System on page 101

■ Section E: Analog System on page 215

■ Section F: Program and Debug on page 291

3.1 Major Sections

For ease of use, information is organized into sections and chapters that are divided according to device functionality.

■ Section – Presents the top-level architecture, how to get started, and conventions and overview information about any
particular area that inform the reader about the construction and organization of the product.

■ Chapter – Presents the chapters specific to an individual aspect of the section topic. These are the detailed
implementation and use information for some aspect of the integrated circuit.

■ Glossary – Defines the specialized terminology used in this technical reference manual (TRM). Glossary terms are
presented in bold, italic font throughout.

■ PSoC® 4 Registers Technical Reference Manual – Supplies all device register details summarized in the technical
reference manual. These are additional documents.

3.2 Documentation Conventions

This document uses only four distinguishing font types, besides those found in the headings.

■ The first is the use of italics when referencing a document title or file name.

■ The second is the use of bold italics when referencing a term described in the Glossary of this document.

■ The third is the use of Times New Roman font, distinguishing equation examples.

■ The fourth is the use of Courier New font, distinguishing code examples.

3.2.1 Register Conventions

Register conventions are detailed in the PSoC 4100M/4200M Family: PSoC 4 Registers TRM.

3.2.2 Numeric Naming

Hexadecimal numbers are represented with all letters in uppercase with an appended lowercase ‘h’ (for example, ‘14h’ or
‘3Ah’) and hexadecimal numbers may also be represented by a ‘0x’ prefix, the C coding convention. Binary numbers have an
appended lowercase ‘b’ (for example, 01010100b’ or ‘01000011b’). Numbers not indicated by an ‘h’ or ‘b’ are decimal.

http://www.cypress.com/?rid=111232

26 PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

Document Construction

3.2.3 Units of Measure

This table lists the units of measure used in this document.

3.2.4 Acronyms

This table lists the acronyms used in this document

Table 3-1. Units of Measure

Symbol Unit of Measure

bps bits per second

°C degrees Celsius

dB decibels

fF femtofarads

Hz Hertz

k kilo, 1000

K kilo, 2^10

KB 1024 bytes, or approximately one thousand bytes

Kbit 1024 bits

kHz kilohertz (32.000)

k kilohms

MHz megahertz

M megaohms

µA microamperes

µF microfarads

µs microseconds

µV microvolts

µVrms microvolts root-mean-square

mA milliamperes

ms milliseconds

mV millivolts

nA nanoamperes

ns nanoseconds

nV nanovolts

 ohms

pF picofarads

pp peak-to-peak

ppm parts per million

SPS samples per second

 sigma: one standard deviation

V volts

Table 3-2. Acronyms

Symbol Unit of Measure

ABUS analog output bus

AC alternating current

ADC analog-to-digital converter

AHB
AMBA (advanced microcontroller bus architecture)
high-performance bus, an ARM data transfer bus

API application programming interface

APOR analog power-on reset

BC broadcast clock

BOM bill of materials

BR bit rate

BRA bus request acknowledge

BRQ bus request

CAN controller area network

CI carry in

CMP compare

CO carry out

CPU central processing unit

CRC cyclic redundancy check

CSD CapSense sigma delta

CT continuous time

CTB continuous time block

CTBm continuous time block mini

DAC digital-to-analog converter

DAP debug access port

DC direct current

DI digital or data input

DMA direct memory access

DNL differential nonlinearity

DO digital or data output

DSI digital signal interface

DSM deep-sleep mode

DW data wire

ECO external crystal oscillator

EEPROM
electrically erasable programmable read only
memory

EMIF external memory interface

FB feedback

FIFO first in first out

FSR full scale range

GPIO general purpose I/O

HCI host-controller interface

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B 27

Document Construction

HFCLK high-frequency clock

HSIOM high-speed I/O matrix

I2C inter-integrated circuit

IDE integrated development environment

ILO internal low-speed oscillator

IMO internal main oscillator

INL integral nonlinearity

I/O input/output

IOR I/O read

IOW I/O write

IRES initial power on reset

IRA interrupt request acknowledge

IRQ interrupt request

ISR interrupt service routine

IVR interrupt vector read

LFCLK low-frequency clock

LIN local interconnect network

LPCOMP low-power comparator

LRb last received bit

LRB last received byte

LSb least significant bit

LSB least significant byte

LUT lookup table

MISO master-in-slave-out

MMIO memory mapped input/output

MOSI master-out-slave-in

MSb most significant bit

MSB most significant byte

NVIC nested vectored interrupt controller

PC program counter

PCH program counter high

PCL program counter low

PD power down

PGA programmable gain amplifier

PM power management

PMA PSoC memory arbiter

POR power-on reset

PPOR precision power-on reset

PRS pseudo random sequence

PSoC® Programmable System-on-Chip

PSRR power supply rejection ratio

PSSDC power system sleep duty cycle

PWM pulse width modulator

Table 3-2. Acronyms (continued)

Symbol Unit of Measure

RAM random-access memory

RETI return from interrupt

RF radio frequency

ROM read only memory

RW read/write

SAR successive approximation register

SC switched capacitor

SCB serial communication block

SIE serial interface engine

SIO special I/O

SE0 single-ended zero

SNR signal-to-noise ratio

SOF start of frame

SOI start of instruction

SP stack pointer

SPD sequential phase detector

SPI serial peripheral interconnect

SPIM serial peripheral interconnect master

SPIS serial peripheral interconnect slave

SRAM static random-access memory

SROM supervisory read only memory

SSADC single slope ADC

SSC supervisory system call

SYSCLK system clock

SWD single wire debug

TC terminal count

TD transaction descriptors

UART universal asynchronous receiver/transmitter

UDB universal digital block

USB universal serial bus

USBIO USB I/O

WCO watch crystal oscillator

WDT watchdog timer

WDR watchdog reset

XRES external reset

XRES_N external reset, active low

Table 3-2. Acronyms (continued)

Symbol Unit of Measure

28 PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

Document Construction

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B 29

Section B: CPU System

This section encompasses the following chapters:

■ Cortex-M0 CPU chapter on page 31

■ DMA Controller Modes chapter on page 37

■ Interrupts chapter on page 51

Top Level Architecture

CPU System Block Diagram

CPU Subsystem

SWD/TC

NVIC, IRQMX

Cortex-M0
48 MHz (PSoC 4200M)
24 MHz (PSoC 4100M)

FAST MUL

System Interconnect (Multi Layer AHB)

DataWire/
DMA

Initiator/MMIO

30 PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B 31

4. Cortex-M0 CPU

The PSoC® 4 ARM Cortex-M0 core is a 32-bit CPU optimized for low-power operation. It has an efficient three-stage pipeline,
a fixed 4-GB memory map, and supports the ARMv6-M Thumb instruction set. The Cortex-M0 also features a single-cycle 32-
bit multiply instruction and low-latency interrupt handling. Other subsystems tightly linked to the CPU core include a nested
vectored interrupt controller (NVIC), a SYSTICK timer, and debug.

This section gives an overview of the Cortex-M0 processor. For more details, see the ARM Cortex-M0 user guide or technical
reference manual, both available at www.arm.com.

4.1 Features
The PSoC 4 Cortex-M0 has the following features:

■ Easy to use, program, and debug, ensuring easier migration from 8- and 16-bit processors

■ Operates at up to 0.9 DMIPS/MHz; this helps to increase execution speed or reduce power

■ Maximum CPU clock frequency of 24 MHz in PSoC 4100M and 48 MHz in PSoC 4200M.

■ Supports the Thumb instruction set for improved code density, ensuring efficient use of memory

■ NVIC unit to support interrupts and exceptions for rapid and deterministic interrupt response

■ Extensive debug support including:

❐ SWD port

❐ Breakpoints

❐ Watchpoints

http://www.arm.com

32 PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

Cortex-M0 CPU

4.2 Block Diagram
Figure 4-1. PSoC 4 CPU Subsystem Block Diagram

4.3 How It Works
The Cortex-M0 is a 32-bit processor with a 32-bit data path, 32-bit registers, and a 32-bit memory interface. It supports most
16-bit instructions in the Thumb instruction set and some 32-bit instructions in the Thumb-2 instruction set.

The processor supports two operating modes (see Operating Modes on page 34). It has a single-cycle 32-bit multiplication
instruction.

4.4 Address Map
The ARM Cortex-M0 has a fixed address map allowing access to memory and peripherals using simple memory access
instructions. The 32-bit (4 GB) address space is divided into the regions shown in Table 4-1. Note that code can be executed
from the code and SRAM regions.

ARM Cortex-M0 CPU

System Interconnect

Flash
Accelerator

SRAM
Controller

SROM
Controller

DAP

CPU Subsystem

Flash SRAM SROM

AHB Bridge

Test
Controller

Fi
xe

d
 I

n
te

rr
u

p
ts

D
S

I
In

te
rr

u
p

ts
Flash

Programming
Interface

CPU & Memory
Subsystem

Interrupt
MUX

DMA
Controller

Table 4-1. Cortex-M0 Address Map

Address Range Name Use

0x00000000 - 0x1FFFFFFF Code
Program code region. You can also place data here. Includes the exception vector table,
which starts at address 0.

0x20000000 - 0x3FFFFFFF SRAM Data region. You can also execute code from this region.

0x40000000 - 0x5FFFFFFF Peripheral All peripheral registers. You cannot execute code from this region.

0x60000000 - 0xDFFFFFFF Not used.

0xE0000000 - 0xE00FFFFF PPB Peripheral registers within the CPU core.

0xE0100000 - 0xFFFFFFFF Device PSoC 4 implementation-specific.

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B 33

Cortex-M0 CPU

4.5 Registers
The Cortex-M0 has 16 32-bit registers, as Table 4-2 shows:

■ R0 to R12 – General-purpose registers. R0 to R7 can be accessed by all instructions; the other registers can be accessed
by a subset of the instructions.

■ R13 – Stack pointer (SP). There are two stack pointers, with only one available at a time. In thread mode, the CONTROL
register indicates the stack pointer to use, Main Stack Pointer (MSP) or Process Stack Pointer (PSP).

■ R14 – Link register. Stores the return program counter during function calls.

■ R15 – Program counter. This register can be written to control program flow.

Table 4-3 shows how the PSR bits are assigned.

Table 4-2. Cortex-M0 Registers

Name Typea

a. Describes access type during program execution in thread mode and handler mode. Debug access can differ.

Reset Value Description

R0-R12 RW Undefined R0-R12 are 32-bit general-purpose registers for data operations.

MSP (R13)

RW [0x00000000]

The stack pointer (SP) is register R13. In thread mode, bit[1] of the CONTROL register
indicates which stack pointer to use:

0 = Main stack pointer (MSP). This is the reset value.

1 = Process stack pointer (PSP).

On reset, the processor loads the MSP with the value from address 0x00000000.

PSP (R13)

LR (R14) RW Undefined
The link register (LR) is register R14. It stores the return information for subroutines,
function calls, and exceptions.

PC (R15) RW [0x00000004]
The program counter (PC) is register R15. It contains the current program address. On
reset, the processor loads the PC with the value from address 0x00000004. Bit[0] of the
value is loaded into the EPSR T-bit at reset and must be 1.

PSR RW Undefined

The program status register (PSR) combines:

Application Program Status Register (APSR).

Execution Program Status Register (EPSR).

Interrupt Program Status Register (IPSR).

APSR RW Undefined
The APSR contains the current state of the condition flags from previous instruction
executions.

EPSR RO [0x00000004].0 On reset, EPSR is loaded with the value bit[0] of the register [0x00000004].

IPSR RO 0 The IPSR contains the exception number of the current ISR.

PRIMASK RW 0 The PRIMASK register prevents activation of all exceptions with configurable priority.

CONTROL RW 0 The CONTROL register controls the stack used when the processor is in thread mode.

Table 4-3. Cortex-M0 PSR Bit Assignments

Bit PSR Register Name Usage

31 APSR N Negative flag

30 APSR Z Zero flag

29 APSR C Carry or borrow flag

28 APSR V Overflow flag

34 PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

Cortex-M0 CPU

Use the MSR or CPS instruction to set or clear bit 0 of the
PRIMASK register. If the bit is 0, exceptions are enabled. If
the bit is 1, all exceptions with configurable priority, that is,
all exceptions except HardFault, NMI, and Reset, are
disabled. See the Interrupts chapter on page 51 for a list of
exceptions.

4.6 Operating Modes
The Cortex-M0 processor supports two operating modes:

■ Thread Mode – used by all normal applications. In this
mode, the MSP or PSP can be used. The CONTROL
register bit 1 determines which stack pointer is used:

❐ 0 = MSP is the current stack pointer

❐ 1 = PSP is the current stack pointer

■ Handler Mode – used to execute exception handlers.
The MSP is always used.

In thread mode, use the MSR instruction to set the stack
pointer bit in the CONTROL register. When changing the
stack pointer, use an ISB instruction immediately after the
MSR instruction. This ensures that instructions after the ISB
execute using the new stack pointer.

In handler mode, explicit writes to the CONTROL register
are ignored, because the MSP is always used. The
exception entry and return mechanisms automatically
update the CONTROL register.

4.7 Instruction Set
The Cortex-M0 implements a version of the Thumb
instruction set, as Table 4-4 shows. For details, see the
Cortex-M0 Generic User Guide.

An instruction operand can be an ARM register, a constant,
or another instruction-specific parameter. Instructions act on
the operands and often store the result in a destination
register. Many instructions are unable to use, or have
restrictions on using, the PC or SP for the operands or

destination register.

27 – 25 – – Reserved

24 EPSR T
Thumb state bit. Must always be 1. Attempting to execute instructions when the T bit is 0
results in a HardFault exception.

23 – 6 – – Reserved

5 – 0 IPSR N/A

Exception number of current ISR:

0 = thread mode
1 = reserved
2 = NMI
3 = HardFault
4 – 10 = reserved
11 = SVCall
12, 13 = reserved
14 = PendSV
15 = SysTick
16 = IRQ0
…
47 = IRQ31

Table 4-3. Cortex-M0 PSR Bit Assignments

Bit PSR Register Name Usage

Table 4-4. Thumb Instruction Set

Mnemonic Brief Description

ADCS Add with carry

ADD{S}a Add

ADR PC-relative address to register

ANDS Bit wise AND

ASRS Arithmetic shift right

B{cc} Branch {conditionally}

BICS Bit clear

BKPT Breakpoint

BL Branch with link

BLX Branch indirect with link

BX Branch indirect

CMN Compare negative

CMP Compare

CPSID Change processor state, disable interrupts

CPSIE Change processor state, enable interrupts

DMB Data memory barrier

DSB Data synchronization barrier

EORS Exclusive OR

ISB Instruction synchronization barrier

LDM Load multiple registers, increment after

LDR Load register from PC-relative address

LDRB Load register with word

LDRH Load register with half-word

LDRSB Load register with signed byte

LDRSH Load register with signed half-word

LSLS Logical shift left

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B 35

Cortex-M0 CPU

4.7.1 Address Alignment

An aligned access is an operation where a word-aligned
address is used for a word or multiple word access, or
where a half-word-aligned address is used for a half-word
access. Byte accesses are always aligned.

No support is provided for unaligned accesses on the
Cortex-M0 processor. Any attempt to perform an unaligned
memory access operation results in a HardFault exception.

4.7.2 Memory Endianness

The PSoC 4 Cortex-M0 uses the little-endian format, where
the least-significant byte of a word is stored at the lowest

address and the most significant byte is stored at the
highest address.

4.8 Systick Timer
The Systick timer is integrated with the NVIC and generates
the SYSTICK interrupt. This interrupt can be used for task
management in a real-time system. The timer has a reload
register with 24 bits available to use as a countdown value.
The Systick timer uses the Cortex-M0 internal clock as a
source.

4.9 Debug
PSoC 4 contains a debug interface based on SWD; it
features four breakpoint (address) comparators and two
watchpoint (data) comparators.

LSRS Logical shift right

MOV{S}a Move

MRS Move to general register from special register

MSR Move to special register from general register

MULS Multiply, 32-bit result

MVNS Bit wise NOT

NOP No operation

ORRS Logical OR

POP Pop registers from stack

PUSH Push registers onto stack

REV Byte-reverse word

REV16 Byte-reverse packed half-words

REVSH Byte-reverse signed half-word

RORS Rotate right

RSBS Reverse subtract

SBCS Subtract with carry

SEV Send event

STM Store multiple registers, increment after

STR Store register as word

STRB Store register as byte

STRH Store register as half-word

SUB{S}a Subtract

SVC Supervisor call

SXTB Sign extend byte

SXTH Sign extend half-word

TST Logical AND-based test

UXTB Zero extend a byte

UXTH Zero extend a half-word

WFE Wait for event

WFI Wait for interrupt

a. The ‘S’ qualifier causes the ADD, SUB, or MOV instructions to update
APSR condition flags.

Table 4-4. Thumb Instruction Set

Mnemonic Brief Description

36 PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

Cortex-M0 CPU

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B 37

5. DMA Controller Modes

The DMA controller provides DataWire (DW) and Direct Memory Access (DMA) functionality. The DMA controller has the
following features:

■ Supports up to 32 DMA channels; consult the device datasheet to determine how many channels are supported for a
particular device

■ Four levels of priority for each channel

■ Byte, half-word (2 bytes), and word (4 bytes) transfers

■ Three modes of operation supported for each channel

■ Configurable interrupt generation

■ Output trigger on completion of transfer

■ Transfer sizes up to 65,536 data elements

The DMA controller supports three operation modes. These operational modes are different in how the DMA controller
operates on a single trigger signal. These operating modes allow the user to implement different operation scenarios for the
DMA. The operation modes are

■ Mode 0: Single data element per trigger

■ Mode 1: All data elements per trigger

■ Mode 2: All data elements per trigger and automatically trigger chained descriptor

The data transfer specifics, such as source and destination address locations and the size of the transfer, are specified by a
descriptor structure. Each channel has an independent descriptor structure.

The DMA controller provides Active/Sleep functionality and is not available in the Deep-Sleep and Hibernate power modes.

5.1 Block Diagram Description
The DMA transfers data to and from memory, peripherals, and registers. These transfers occur independent of the CPU. The
DMA can transfer up to 65,536 data elements in one transfer. These data elements can be 8-bit, 16-bit, or 32-bit wide. The
DMA starts each transaction through an external trigger that can come from a DMA channel (including itself), another DMA
channel, a peripheral, or the CPU. The DMA is best used to offload data transfer tasks from the CPU.

Figure 5-1 gives an overview of the DMA controller at a block level.

38 PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

DMA Controller Modes

Figure 5-1. DMA Controller Block Diagram

Every DMA channel has two descriptors, which are
responsible for configuring parameters specific to the
transfer, such as source address, destination address, and
data width. The transfer initiation in the DMA channel is on a
trigger event. The trigger signals can come from different
peripherals in the device, including the DMA itself.

The DMA controller has two bus interfaces, the master
interface and the slave interface. Master I/F is an AHB-Lite
bus master, which allows the DMA controller to initiate AHB-
Lite data transfers to the source and destination locations.
The DMA is the bus master in the master interface. This is
the interface through which all DMA transfers are
accomplished.

The DMA configuration registers and descriptors are
accessed and reconfigured through the slave interface.
Slave I/F is an AHB-Lite bus slave, which allows the PSoC
main CPU to access the DMA controller's control/status
registers and to access the descriptor structure. CPU is
generally the master for this bus.

The receipt of a trigger activates a state machine in the DMA
controller that goes through a trigger prioritization and
processing and then initiates a data transfer according to the
descriptor setting. When a transfer is complete, an output
trigger is generated, which can be used as trigger condition
or event for starting another function.

The DMA controller also has an interrupt logic block. Only
one interrupt line is available from the DMA controller to
interrupt the CPU. Individual DMA descriptors can be
configured so that they activate this interrupt line on
completion of the transfer.

5.1.1 Trigger Sources and Multiplexing

Every DMA channel has an input and output trigger
associated with it. The input trigger can come from any
peripheral, CPU, or a DMA channel itself. The input trigger is
used to trigger a DMA transfer, as defined by the Transfer
Mode. A 'logic high', on the trigger input will trigger the DMA

channel. The minimum width of this 'logic high' is two system
clock cycles. The deactivation setting configures the nature
of trigger deactivation.

The output trigger signals the completion of a transfer. This
signal can be used as a trigger to a DMA channel or as a
digital signal to the digital interconnect. The trigger input can
come from different sources and is routed through a Trigger
Multiplexer.

5.1.1.1 Trigger Multiplexer

The DMA channels can have trigger inputs from different
peripheral sources in the PSoC. This is routed to the
individual DMA channel trigger inputs through the trigger
multiplexer.

In the DMA trigger, multiplexers are organized in trigger
groups. Each trigger group is composed of multiple
multiplexers feeding into the individual DMA channel trigger
inputs.

The PSoC 4 implements a single trigger group (Trigger
group 0), which provides trigger inputs to the DMA. The
trigger input options can come from TCPWM, SAR ADC,
SCB, UDB, and DMA output triggers. Figure 5-2 shows the
trigger multiplexer implementation.

PING
descriptor

SRC

DST

CTL

STATUS

CH_CTL

SRC

DST

CTL

STATUS

Descriptor 0

SRC

DST

CTL

STATUS

Descriptor 1

DMAC_CH_CTLx

DMA channel

SRC

DST

CTL

STATUS

Trigger
 multiplexer

Input
triggers

SW trigger

Slave I/F

Pending triggers Priority decoder Data transfer

Interrupt logic

Output
triggers

DMAC_CTL

DMAC_STATUS

DMAC_STATUS_SRC_ADDR

DMAC_STATUS_DST_ADDR

DMAC_STATUS_CH_ACT

DMAC_INTR

DMAC_INTR_SET

DMAC_INTR_MASK

DMAC_INTR_MASKED

Master I/F
Interrupt

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B 39

DMA Controller Modes

Figure 5-2. Trigger Multiplexer Implementation

The trigger source for individual DMA channels is selected
in the PERI_TR_GROUP_TR_OUT_CTLx[5:0] register.
Table 5-1 provides the trigger multiplexers.

DMA
channel 0

DMA Channel 0
input trigger

TCPWM
triggers

SAR ADC
triggers

SCB
Triggers

UDB
Triggers

DMA output
triggers

PERI_TR_GROUP_TR_OUT_CTL0

PERI_TR_GROUP_TR_OUT_CTL1

PERI_TR_GROUP_TR_OUT_CTL7

DMA
channel 1

DMA Channel 1
input trigger

DMA
channel 7

DMA Channel 7
input trigger

Table 5-1. Trigger Sources

PERI_TR_GROUP_TR_OUT_CTLx
[5:0]

Trigger Source

0
Software trigger hardwired
to zero

1 TCPWM 0 overflow

2 TCPWM 1 overflow

3 TCPWM 2 overflow

4 TCPWM 3 overflow

5 TCPWM 4 overflow

6 TCPWM 5 overflow

7 TCPWM 6 overflow

8 TCPWM 7 overflow

9 TCPWM 0 Compare

10 TCPWM 1 Compare

11 TCPWM 2 Compare

12 TCPWM 3 Compare

13 TCPWM 4 Compare

14 TCPWM 5 Compare

15 TCPWM 6 Compare

16 TCPWM 7 Compare

17 TCPWM 0 Underflow

18 TCPWM 1 Underflow

19 TCPWM 2 Underflow

20 TCPWM 3 Underflow

21 TCPWM 4 Underflow

22 TCPWM 5 Underflow

Table 5-1. Trigger Sources

PERI_TR_GROUP_TR_OUT_CTLx
[5:0]

Trigger Source

40 PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

DMA Controller Modes

5.1.1.2 Creating Software Triggers

Every DMA channel has a trigger input and output trigger
associated with it. This trigger input can come from any
trigger group, as described in Trigger Multiplexer on
page 38. A software trigger for the DMA channel is
implemented using the trigger input option 0 in the trigger
multiplexer settings. When
PERI_TR_GROUP_TR_OUT_CTLx [5:0] is zero, the DMA
trigger is configured for a software trigger. The DMA channel
is then triggered using the PERI_TR_CTL register.

5.1.2 Pending Triggers

When a DMA channel is already operational and a trigger
event is encountered, the DMA channel corresponding to
the trigger is put into a pending state. Pending triggers keep
track of activated triggers by locally storing them in pending
bits. This is essential, because multiple channel triggers
may be activated simultaneously, whereas only one channel
can be served by the data transfer engine at a time. This
block enables the use of both level-sensitive and pulse-
sensitive triggers.

The pending triggers are registered in the status register
(DMAC_STATUS_CH_ACT).

5.1.3 Output Triggers

Each channel has an output trigger. This trigger is high for
two system clock cycles. The trigger is generated on the
completion of a data transfer. At the system level, these
output triggers can be connected to the trigger multiplexer
component. This connection allows for a DMA controller

output trigger to be connected to a DMA controller input
trigger. In other words, the completion of a transfer in one
channel can activate another channel or even reactivate the
same channel.

Note that the DMA output triggers also connect to digital
system interconnects (DSI) and some DSI signals connect
to the trigger multiplexer inputs.

5.1.4 Channel Prioritization

When there are multiple channels with active triggers, the
channel priority is used to determine which channel gets the
access to the data transfer engine. The priorities are set for
each channel using the PRIO field of the channel control
register (DMAC_CH_CTL), with ‘0’ representing the highest
priority and ‘3’ representing the lowest priority. Priority
decoding uses the channel priority to determine the highest
priority activated channel. If multiple activated channels
have the same highest priority, the channel with the lowest
index ‘i’, is considered the highest priority activated channel.

5.1.5 Data Transfer Engine

The data transfer engine is responsible for the data transfer
from a source location to a destination location. When idle,
the data transfer engine is ready to accept the highest
priority activated channel. The configuration of the data
transfer is specified by the descriptor. The data transfer
engine implements a state machine, which has the following
states.

■ State 0 - Default State: This is the idle state of the DMA
controller, where it waits for a trigger condition to initiate
transfer.

■ State 1 - Load Descriptor: When a trigger condition is
encountered and priority is resolved, the data transfer
engine enters the load descriptor state. In this state, the
active descriptor (SRC, DST, and CTL) is loaded into the
DMA controller to initiate the transfer. The
DMAC_STATUS, DMAC_STATUS_SRC_ADDR and
DMAC_STATUS_DST_ADDR, and STATUS_CH_ACT
will also reflect the currently active status.

■ State 2 - Loading data from source: The data transfer
engine uses the master I/F to load data from the source
location.

■ State 3 - Storing data at destination: The data transfer
engine uses the master I/F to store data to the
destination location.

Depending on the Transfer mode, State 2 and 3 may be
performed multiple times.

■ State 4 - Storing Descriptor: The data transfer engine
updates the channel's descriptor structure to reflect the
data transfer and stores it in the descriptor.

■ State 5 - Wait for Trigger Deactivation: If the trigger
deactivation condition is specified as two cycles, this
condition is met after two cycles of the trigger activation.
If it was set to ‘wait indefinitely’, the DMA controller will
remain in this state until the trigger signal has gone low.

23 TCPWM 6 Underflow

24 TCPWM 7 Underflow

25 SAR ADC EOC

26 SCB0 TX

27 SCB0 RX

28 SCB1 TX

29 SCB1 RX

30 SCB2 TX

31 SCB2 RX

32 SCB3 TX

33 SCB3 RX

34 UDB DSI request 0

35 UDB DSI request 1

36 DMA channel 0 trigger out

37 DMA channel 1 trigger out

38 DMA channel 2 trigger out

39 DMA channel 3 trigger out

40 DMA channel 4 trigger out

41 DMA channel 5 trigger out

42 DMA channel 6 trigger out

43 DMA channel 7 trigger out

Table 5-1. Trigger Sources

PERI_TR_GROUP_TR_OUT_CTLx
[5:0]

Trigger Source

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B 41

DMA Controller Modes

■ State 6 - Storing Descriptor Response: In this phase, the
data transfer according to the descriptor is completed
and an interrupt may be generated if it was configured to
do so. The Response field in
DMAC_DESCR_PING_STATUS or
DMAC_DESCR_PONG_STATUS is also populated and
the state transitions to State 0.

5.2 Descriptors
The data transfer between a source and a destination in a
channel is configured using a descriptor. Each channel in
the DMA has two descriptors named PING and PONG
descriptors (also called Descriptor 0 and Descriptor 1 in this
document). A descriptor is a set of four 32-bit registers that
contain the configuration for the transfer in the associated
channel.

Figure 5-3 shows the structure of a descriptor.

Figure 5-3. Descriptor Structure

5.2.1 Address Configuration

Figure 5-4 demonstrates the use of the descriptor settings
for the address configuration of a transfer.

Source and Destination Address: The Source and
Destination addresses are set in the respective registers in
the descriptor. These set the base addresses for the source
and destination location for the transfer. In case the
descriptor is configured to transfer a single element, this
field holds the source/destination address of the data
element. If the descriptor is configured to transfer multiple
elements with source address or destination address or both
in an incremental mode, this field will hold the address of the
first element that is transferred.

Data Number (DATA_NR): This is a transfer count
parameter. DATA_NR is a 16-bit number, which determines
the number of elements to be transferred before a descriptor
is defined as completed. In a typical use case, this setting is
the buffer size of a transfer.

Source Address Increment (SCR_ADDR_INC): This is a
bit setting in the control register, which determines if a
source address is incremented between each data element
transfer. This feature is enabled when the source of the data
is a buffer and each transfer element needs to be fetched

from subsequent locations in the memory. In this case, the
Source Address register sets only the base address and
subsequent transfers are incremental on this. The size of
address increments are determined based on the
SCR_TRANSFER_SIZE setting described in 5.2.2 Transfer
Size on page 42.

Destination Address Increment (DST_ADDR_INC): This
is a bit setting in the control register, which determines if a
destination address is incremented between each element
transfer. This feature is enabled when the destination of the
data is a buffer and each transfer element needs to be
transferred to subsequent locations in the memory. In this
case, the Destination Address register sets only the base
address and subsequent transfers are incremental on this.
The size of address increments are determined based on
the DST_TRANSFER_SIZE setting described in 5.2.2
Transfer Size on page 42.

Invalidate Descriptor (INV_DESCR): When this bit is set,
the descriptor transfers all data elements and clears the
descriptor's VALID bit, making it invalid. This feature affects
the VALID bit in the DMA_DESCRx_STATUS register. This
setting is used in cases where the user expects the
descriptor to get invalidated after its transfer is complete.
The descriptor can be made valid again in firmware by
setting the VALID bit in the descriptor’s STATUS register.

Preemptable (PREEMPTABLE): If disabled, the current
transfer as defined by Operational mode is allowed to
complete undisturbed. If enabled, the current transfer as
defined by Operation Mode can be preempted/interrupted
by a DMA channel of higher priority. When this channel is
preempted, it is set as pending and will run the next time its
priority is the highest.

Setting Interrupt Cause (SET_CAUSE): When the
descriptor completes transferring all data elements, it
generates an interrupt request. This interrupt request is
shared among all DMA channels. Setting this bit enables the
corresponding channel to be a source of this interrupt.

Trigger Type (WAIT_FOR_DEACT): When the DMA
transfer based on the descriptor is completed, the data
transfer engine checks the state of trigger deactivation. This
is corresponding to State 5 of the data transfer engine. See
5.1.5 Data Transfer Engine on page 40. The type of DMA
input trigger will determine when the trigger signal is
considered deactivated. The DMA transfer is activated when
the trigger is activated, but the transfer is not considered
complete until the trigger state is deactivated. This field is
used to synchronize the controller's data transfer(s) with the
agent that generated the trigger. This field is ONLY used on
completion of a descriptor execution and has four settings:

■ 0 - Pulse Trigger: Do not wait for deactivation.

■ 1 - Level-sensitive waits four SYSCLK cycles: The DMA
trigger is deactivated after the level trigger signal is
detected for four cycles.

■ 2 - Level-sensitive waits eight SYSCLK cycles: The DMA
transfer is initiated after the level trigger signal is
detected for eight cycles.

■ 3 - Pulse trigger waits indefinitely for deactivation. The
DMA transfer is initiated after the trigger signal
deactivates.

Descriptor

Source Address
DMA_DESCRx_SRC

Destination Address
DMA_DESCRx_DST

DATA_NR (Transfer Count)
DMA_DESCRx_CTL

SCR_ADDR_INCR
SCR_TRANSFER_SIZE

DST_ADDR_INCR
DST_TRANSFER_SIZE

DATA_SIZE

OPCODE
FLIPPING SET_CAUSEPREEMTABLE

INV_DESCR WAIT_FOR_DEACT

CURRENT_DATA_NR (Transfer Index)
DMA_DESCRx_STATUS

RESPONSE VALID

Status Registers

Control Registers

Address Registers

42 PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

DMA Controller Modes

Figure 5-4. DMA Transfer: Address Configuration

5.2.2 Transfer Size

The transfer word width for a transfer can be configured using the transfer/data size parameter in the descriptor. The settings
are diversified into source transfer size, destination transfer size, and data size. The data size parameter (DATA_SIZE) sets
the width of the bus for the transfer. The source and destination transfer sizes, set by SCR_TRANSFER_SIZE and
DST_TRANSFER_SIZE, can have a value of either the DATA_SIZE or 32 bit. DATA_SIZE can be set to a 32-bit, 16-bit, or 8-
bit setting.

The data width of most PSoC 4 peripheral registers is 4 bytes (32 bit); therefore, SCR_TRANSFER_SIZE or
DST_TRANSFER_SIZE should typically be set to 32 bit when DMA is using a peripheral as its source or destination. The
source and destination transfer size for the DMA component must match the addressable width of the source and destination,
regardless of the width of data that needs to be moved. The DATA_SIZE parameter will correspond to the width of the actual
data. For example, if a 16-bit PWM is used as a destination for DMA data, the DST_TRANSFER_SIZE must be set to 32 bit to
match the width of the PWM register, because the peripheral register width for the TCPWM block (and most PSoC 4
peripherals) is always 32 bit. However, in this example the DATA_SIZE for the destination may still be set to 16 bit because
the 16-bit PWM only uses 2 bytes of data. SRAM and flash are 8-bit, 16-bit, or 32-bit addressable and can use any source
and destination transfer sizes to match the needs of the application.

Table 5-2 summarizes the possible combinations of the transfer size settings and its description.

Table 5-2. Transfer Size Settings

DATA_SIZE SCR_TRANSFER_SIZE DST_TRANSFER_SIZE Typical Usage Description

8-bit 8-bit 8-bit Memory to Memory No data manipulation

8-bit 32-bit 8-bit Peripheral to Memory Higher 24 bits from the source dropped

8-bit 8-bit 32-bit Memory to Peripheral Higher 24 bits zero padded at destination

8-bit 32-bit 32-bit Peripheral to Peripheral
Higher 24 bits from the source dropped and
higher 24 bits zero padded at destination

Descriptor

Source Address
DMA_DESCRx_SRC

Destination Address
DMA_DESCRx_DST

DATA_NR (Transfer Count)
DMA_DESCRx_CTL

SCR_ADDR_INCR
SCR_TRANSFER_SIZE

DST_ADDR_INCR
DST_TRANSFER_SIZE

DATA_SIZE

OPCODE
FLIPPING SET_CAUSEPREEMTABLE

INV_DESCR WAIT_FOR_DEACT

CURRENT_DATA_NR (Transfer Index)
DMA_DESCRx_STATUS

RESPONSE VALID

Base Address

Base Address + 1

Base Address + 2

Base Address + 3

Base Address (BADDR+N-1)

Source

N
 elem

e
n

t

Base Address

Base Address + 1

Base Address + 2

Base Address + 3

Base Address (BADDR+N-1)

Destination

N
 elem

e
n

t

Status Registers

Control Registers

Address Registers

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B 43

DMA Controller Modes

5.2.3 Descriptor Chaining

Every channel has a PING and PONG descriptor, which can
have a distinct setting for the associated transfer. The active
descriptor is set by the PING_PONG bit in the individual
channel control register (DMAC_CH_CTL). The functionality
of the PING and PONG descriptors is to create a link list of
descriptors. This helps create a transition from one transfer
configuration to another without CPU intervention. In
addition, the two descriptors mean that the CPU is free to
modify the PING register when PONG register is active and
vice versa.

The FLIPPING bit in a descriptor, when enabled, links it to
its PING/PONG counterpart. This field is used in conjunction
with the OPCODE 2 transfer mode. Therefore, when the
FLIPPING bit is enabled in a PING descriptor, configured for
OPCODE 2, the channel automatically executes the PONG
descriptor at the end of the PING descriptor. In case the
configuration is for an OPCODE 0 or OPCODE 1, a new
trigger is required to start the PONG descriptor.

The use of PING PONG has more relevance in the context
of transfer modes.

5.2.4 Transfer Mode

The operation of a channel during the execution of a

descriptor is defined by the OPCODE settings. Three
OPCODEs are possible for each channel of the DMA
controller.

5.2.4.1 Single Data Element Per Trigger
(OPCODE 0)

This mode is achieved when an OPCODE of 0 is configured.
DMA transfers a single data element from a source location
to a destination location on each trigger signal. This
functionality can be used in conjunction with other settings
in the descriptor such as Source and Destination increment.

Figure 5-5 shows a typical use case of this transfer. Here an
ADC's data register is the source and the destination is a
peripheral register such as a PWM compare. The trigger is
from the ADC's end-of-conversion signal. When the trigger
is received, the transfer engine will load data from the ADC
and store the lower 16 bits to the PWM register. Successive
triggers will result in the same behavior because the
descriptor is rerun.

Note how the source and destination data widths are
assigned as 32 bit. This is because all accesses to
peripheral registers in PSoC must be 32 bit. Because the
valid data width is only 16 bit, the DATA_SIZE is maintained
as 16 bit.

Figure 5-5. OPCODE 0: Simple DMA Transfer from Peripheral to Peripheral

16-bit 16-bit 16-bit Memory to Memory No data manipulation

16-bit 32-bit 16-bit Peripheral to Memory Higher 16 bits from the source dropped

16-bit 16-bit 32-bit Memory to Peripheral Higher 16 bits zero padded at destination

16-bit 32-bit 32-bit Peripheral to Peripheral
Higher 16 bits from the source dropped and
higher 16-bit zero padded at destination

32-bit 32-bit 32-bit Peripheral to Peripheral No data manipulation

Table 5-2. Transfer Size Settings

DATA_SIZE SCR_TRANSFER_SIZE DST_TRANSFER_SIZE Typical Usage Description

PING Descriptor

ADC Data
DMA_DESCRx_SRC

PWM Register
DMA_DESCRx_DST

DATA_NR=1
DMA_DESCRx_CTL

SCR_ADDR_INCR=0
SCR_TRANSFER_SIZE= 32-bit

DST_ADDR_INCR=0
DST_TRANSFER_SIZE=32-bit

DATA_SIZE=16bit

OPCODE=0
FLIPPING=0 SET_CAUSEPREEMTABLE

INV_DESCR=0 WAIT_FOR_DEACT

CURRENT_DATA_NR (Transfer Index)
DMA_DESCRx_STATUS

RESPONSE VALID

Status Registers

Control Registers

Address Registers

DMA Channel

16 bit 32 bit

tr_in

Descriptor 0
(PING)

PWMADC
EOC

32 bit

44 PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

DMA Controller Modes

Figure 5-6 describes another use case where the data transfer is between the ADC data register and a buffer. The use case
shows a PING descriptor, which is configured to increment the destination while taking data from a source location, which is
an ADC. When the trigger is received, the transfer engine will load data from the ADC location and store to the memory buffer,
Sample 1 memory location. Subsequent triggers will continue to store the ADC data into consecutive locations from Sample
1, until the PING descriptor buffer size (DATA_NR field) is filled.

Figure 5-6. OPCODE 0: Transfer with Destination Address Increment Feature

A similar use case is shown in Figure 5-7. This demonstrates the use of the PING and PONG descriptors. On completion of
the PING descriptor, the controller will flip to executing the PONG descriptor. Note that the flipping bit is enabled in the
descriptor; this enables the chaining of the descriptors. If the flipping bit was not enabled, the same descriptor will be re-run.
Thus, two buffer transfers are achieved in sequence. However, note that the transfers are still done at one element transfer
for every trigger.

Figure 5-7. OPCODE 0: Transfer Using Flipping Feature

PING Descriptor

ADC Data
DMA_DESCRx_SRC

Memory Buffer
DMA_DESCRx_DST

DATA_NR=N
DMA_DESCRx_CTL

SCR_ADDR_INCR=0
SCR_TRANSFER_SIZE= 32-bit

DST_ADDR_INCR=1
DST_TRANSFER_SIZE=16-bit

DATA_SIZE=16bit
OPCODE=0

FLIPPING=0 SET_CAUSEPREEMTABLE
INV_DESCR=0 WAIT_FOR_DEACT

CURRENT_DATA_NR (Transfer Index)
DMA_DESCRx_STATUS

RESPONSE VALID

Status Registers

Control Registers

Address Registers

DMA Channel

tr_in

Memory Buffer
(SRAM)

ADC
EOC

TRIGGER

Sample 1

Sample 2

Sample 3

Sample 4

Sample N

Trigger 1

Trigger 2

Trigger N

Interrupt

Descriptor 0
(PING)

16 bit32 bit

PING Descriptor

ADC Data
DMA_DESCRx_SRC

Memory Buffer 1
DMA_DESCRx_DST

DATA_NR=N
DMA_DESCRx_CTL

SCR_ADDR_INCR=0
SCR_TRANSFER_SIZE= 32-bit

DST_ADDR_INCR=1
DST_TRANSFER_SIZE=16-bit

DATA_SIZE=16bit

OPCODE=0
FLIPPING=1 SET_CAUSEPREEMTABLE

INV_DESCR=0 WAIT_FOR_DEACT

CURRENT_DATA_NR (Transfer Index)
DMA_DESCRx_STATUS

RESPONSE VALID

PONG Descriptor

ADC Data
DMA_DESCRx_SRC

Memory Buffer 2
DMA_DESCRx_DST

DATA_NR=M
DMA_DESCRx_CTL

SCR_ADDR_INCR=0
SCR_TRANSFER_SIZE= 16-bit

DST_ADDR_INCR=1
DST_TRANSFER_SIZE=16-bit

DATA_SIZE=16bit

OPCODE=0
FLIPPING=1 SET_CAUSEPREEMTABLE

INV_DESCR=0 WAIT_FOR_DEACT

CURRENT_DATA_NR (Transfer Index)
DMA_DESCRx_STATUS

RESPONSE VALID

Status Registers

Control Registers

Address Registers

DMA Channel

tr_in

Memory Buffer 1
(SRAM)

ADC
EOC

TRIGGER

Sample 1

Sample 2

Sample 3

Sample 4

Sample N

Trig
ger 1

Trig
ger 2

Trigger N

Interrupt

Descriptor 0
(PING)

16 bit32 bit

Descriptor 1
(PONG)

Memory Buffer 2
(SRAM)

Sample 1

Sample 2

Sample 3

Sample 4

Sample M

Trigger N+1

Trigger N+2

Trigger N
+M

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B 45

DMA Controller Modes

5.2.4.2 Entire Descriptor Per Trigger (OPCODE 1)

In this mode of operation, the DMA transfers multiple data elements from a source location to a destination location in one
trigger. In OPCODE 1, the controller executes the entire descriptor in a single trigger. This type of functionality is useful in
memory-to-memory buffer transfers. When the trigger condition is encountered, the transfer is continued until the descriptor is
completed.

Figure 5-8 shows an OPCODE 1 transfer, which transfers the entire contents of the source buffer into the destination buffer.
The entire transfer is part of a single PING descriptor and is completed on a single trigger.

Figure 5-8. DMA Transfer Example with OPCODE 1

5.2.4.3 Entire Descriptor Chain Per Trigger (OPCODE 2)

OPCODE 2 is always used in conjunction with the FLIPPING field. When OPCODE 2 is used with FLIPPING enabled in a
PING descriptor, a single trigger can execute a PING descriptor and automatically flip to the PONG descriptor and execute
that too. If the PONG descriptor is also provided with an OPCODE 2, then the cycling between PING and PONG will continue
until one of the descriptors are invalidated or changed by the CPU.

Figure 5-9 shows a case where the PING and PONG descriptors are configured for OPCODE 2 operation and on the second
iteration of the PING register, FLIPPING is disabled by the CPU.

DMA Channel

TR_in TR_out

Source Addr
[SRAM]

Software
Trigger

Sample 1

Sample 2

Sample 3

Sample 4

Sample N

Destination Addr
[SRAM]

Sample 1

Sample 2

Sample 3

Sample 4

Sample N

PING Descriptor

Source Addr
DMA_DESCRx_SRC

Destination Addr
DMA_DESCRx_DST

DATA_NR=N
DMA_DESCRx_CTL

SCR_ADDR_INCR=1
SCR_TRANSFER_SIZE= 32-bit

DST_ADDR_INCR=1
DST_TRANSFER_SIZE=32-bit

DATA_SIZE=32bit

OPCODE=1
FLIPPING=0 SET_CAUSEPREEMTABLE

INV_DESCR=0 WAIT_FOR_DEACT

CURRENT_DATA_NR (Transfer Index)
DMA_DESCRx_STATUS

RESPONSE VALID

Status Registers

Control Registers

Address Registers

Descriptor 0
(PING)

46 PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

DMA Controller Modes

Figure 5-9. DMA Transfer Example with OPCODE 2

The OPCODE 2 transfer mode can be customized to implement distinct use cases. Figure 5-10 illustrates one such use case.
Here, the source data can come from two different locations which are not consecutive memory. The destination is a data
structure that is in consecutive memory locations. One source is the Timer 2, which holds a timing data and the other source
is an ADC. Both the data is stored in consecutive locations in memory.

Update by CPU

PING Descriptor

Source Addr1
DMA_DESCRx_SRC

Destination Addr1
DMA_DESCRx_DST

DATA_NR=N
DMA_DESCRx_CTL

SCR_ADDR_INCR=1
SCR_TRANSFER_SIZE= 32-bit

DST_ADDR_INCR=1
DST_TRANSFER_SIZE=32-bit

DATA_SIZE=32bit

OPCODE=2
FLIPPING=1 SET_CAUSEPREEMTABLE

INV_DESCR=0 WAIT_FOR_DEACT

CURRENT_DATA_NR (Transfer Index)
DMA_DESCRx_STATUS

RESPONSE VALID

PONG Descriptor

Source Addr2
DMA_DESCRx_SRC

Destination Addr2
DMA_DESCRx_DST

DATA_NR=3M
DMA_DESCRx_CTL

SCR_ADDR_INCR=1
SCR_TRANSFER_SIZE= 32-bit

DST_ADDR_INCR=1
DST_TRANSFER_SIZE=32-bit

DATA_SIZE=32bit

OPCODE=2
FLIPPING=1 SET_CAUSEPREEMTABLE

INV_DESCR=0 WAIT_FOR_DEACT

CURRENT_DATA_NR (Transfer Index)
DMA_DESCRx_STATUS

RESPONSE VALID

PING Descriptor

Source Addr3
DMA_DESCRx_SRC

Destination Addr3
DMA_DESCRx_DST

DATA_NR=K
DMA_DESCRx_CTL

SCR_ADDR_INCR=1
SCR_TRANSFER_SIZE= 32-bit

DST_ADDR_INCR=1
DST_TRANSFER_SIZE=32-bit

DATA_SIZE=32bit

OPCODE=2
FLIPPING=0 SET_CAUSEPREEMTABLE

INV_DESCR=0 WAIT_FOR_DEACT

CURRENT_DATA_NR (Transfer Index)
DMA_DESCRx_STATUS

RESPONSE VALID

Status Registers

Control Registers

Address Registers

Source Addr1
[SRAM]

Sample 1

Sample 2

Sample 3

Sample 4

Sample N

Destination Addr 1
[SRAM]

Sample 1

Sample 2

Sample 3

Sample 4

Sample N

DMA Channel

TR_inSoftware
Trigger

Source Addr2
[SRAM]

Sample 1

Sample 2

Sample 3

Sample 4

Sample M

Destination Addr 2
[SRAM]

Sample 1

Sample 2

Sample 3

Sample 4

Sample M

Source Addr3
[SRAM]

Sample 1

Sample 2

Sample 3

Sample 4

Sample K

Destination Addr 3
[SRAM]

Sample 1

Sample 2

Sample 3

Sample 4

Sample K

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B 47

DMA Controller Modes

Figure 5-10. OPCODE 2: Multiple Sources to Memory

5.2.5 Operation and Timing

Figure 5-11 shows the DMA controller design with a trigger, data, or interrupt flow superimposed on it.

Figure 5-11. Operational Flow

Memory
DMA Channel

32 bit

ADC

32bit
Timer 2
(WDT2)

Data Structure
Timestmp_Data

Time (32bit)

ADC Channel
0 (16 bit)

ADC Channel
1 (16 bit)

ADC Channel 0 (16 bit)

Descriptor 0
(PING)

Descriptor 1
(PONG)

Channel
0

Channel
1

32 bit

Time data (32bit)

ADC Channel 0 (16 bit)
Trigger

SW2

PING Descriptor

Timer 2
DMA_DESCRx_SRC

Memory
DMA_DESCRx_DST

DATA_NR=1
DMA_DESCRx_CTL

SCR_ADDR_INCR=0
SCR_TRANSFER_SIZE= 32-bit

DST_ADDR_INCR=0
DST_TRANSFER_SIZE=32-bit

DATA_SIZE=32bit

OPCODE=2
FLIPPING=1 SET_CAUSEPREEMTABLE

INV_DESCR=0 WAIT_FOR_DEACT

CURRENT_DATA_NR (Transfer Index)
DMA_DESCRx_STATUS

RESPONSE VALID

PONG Descriptor

ADC
DMA_DESCRx_SRC

Memory
DMA_DESCRx_DST

DATA_NR=2
DMA_DESCRx_CTL

SCR_ADDR_INCR=1
SCR_TRANSFER_SIZE= 32-bit

DST_ADDR_INCR=1
DST_TRANSFER_SIZE=32-bit

DATA_SIZE=32bit
OPCODE=2

FLIPPING=1 SET_CAUSEPREEMTABLE
INV_DESCR=0 WAIT_FOR_DEACT

CURRENT_DATA_NR (Transfer Index)
DMA_DESCRx_STATUS

RESPONSE VALID

Status Registers

Control Registers

Address Registers

PING
descriptor

SRC

DST

CTL

STATUS

CH_CTL

SRC

DST

CTL

STATUS

Descriptor 0

SRC

DST

CTL

STATUS

Descriptor 1

DMAC_CH_CTLx

DMA channel

SRC

DST

CTL

STATUS

Trigger
 multiplexer

Input
triggers

SW trigger

Slave I/F

Pending triggers Priority decoder Data transfer

Interrupt logic

Output
triggers

DMAC_CTL

DMAC_STATUS

DMAC_STATUS_SRC_ADDR

DMAC_STATUS_DST_ADDR

DMAC_STATUS_CH_ACT

DMAC_INTR

DMAC_INTR_SET

DMAC_INTR_MASK

DMAC_INTR_MASKED

Master I/F
Interrupt

2 3

4
7

5

6

8

1

48 PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

DMA Controller Modes

The flow exemplifies the steps that are involved in a DMA
controller data transfer:

1. The main CPU programs the descriptor structure for a
specific channel. It also programs the DMA register that
selects a specific system trigger for the channel.

2. The channel's system trigger is activated.

3. Priority decoding determines the highest priority
activated channel.

4. The data transfer engine accepts the activated channel
and uses the channel identifier to load the channel's
descriptor structure. The descriptor structure specifies
the channel's data transfers.

5. The data transfer engine uses the master I/F to load data
from the source location.

6. The data transfer engine uses the master I/F to store
data to the destination location. In a single element
(opcode 0) transfer, steps 5 and 6 are performed once.
In a multiple element descriptor (opcode 1 or 2) transfer,
steps 5 and 6 may be performed multiple times in
sequence to implement multiple data element transfers.

7. The data transfer engine updates the channel's
descriptor structure to reflect the data transfer and stores
it in the descriptor SRAM.

8. If all the data transfers as specified by a descriptor
channel structure have completed, an interrupt may be
generated (this is a programmable option).

The DMA controller data transfer steps can be classified as
either: initialization, concurrent, or sequential steps:

■ Initialization: This includes step 1, which programs the
descriptor structures. This step is done for each
descriptor structure. It is performed by the main CPU
and is NOT initiated by an activated channel trigger.

■ Concurrent: This includes steps 2 and 3. These steps
are performed in parallel for each channel.

■ Sequential: This includes steps 4 through 8. These steps
are performed sequentially for each activated channel.
As a result, the DMA controller throughput is determined
by the time it takes to perform these steps. This time
consists of two parts: the time spent by the controller (to
load and store the descriptor) and the time spent on the
bus infrastructure. The latter time is dependent on the
latency of the bus (determined by arbiter and bridge
components) and the target memories/peripherals.

When transferring single data elements, it takes 12 clock
cycles to complete one full transfer under the assumption of
no wait states on the AHB-Lite bus. The equation for number
of cycles to complete a transfer in this mode is:

No of cycles = 12 + LOAD wait states + STORE wait states

When transferring entire descriptors or chaining descriptor
chains, 12 clock cycles are needed for the first data element.
Subsequent elements need three cycles. This is also under
the assumption of no wait states on the AHB-Lite bus. The
equation for number of cycles to transfer ‘N’ elements is:

No of cycles = (12 + LOAD wait states + STORE wait states)
+ (N–1)*(3 + LOAD wait states + STORE wait states)

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B 49

DMA Controller Modes

5.3 Register List

Register Name Comments Features

DMAC_CTL Block control Enable bit for the DMA controller.

DMAC_STATUS Block status Provides status information of the DMA controller.

DMAC_STATUS_SRC_ADDR Current source address Provides details of the source address currently being loaded.

DMAC_STATUS_DST_ADDR Current destination address Provides details of the destination address currently being loaded.

DMAC_STATUS_CH_ACT Channel activation status
Software reads this field to get information on all actively pending
channels (either in pending or in the data transfer engine).

DMAC_CH_CTLx Channel control register
Provides channel enable, PING/PONG and priority settings for Chan-
nel x.

DMAC_DESCRx_PING_SRC PING source address Base address of source location for Channel x.

DMAC_DESCRx_PING_DST PING destination address Base address of destination location for Channel x.

DMAC_DESCRx_PING_CTL PING control word All control settings for the PING descriptor.

DMAC_DESCRx_PING_STATUS PING status word Validity, response, and real time Data_NR index status.

DMAC_DESCRx_PONG_SRC PONG source address Base address of source location for Channel x.

DMAC_DESCRx_PONG_DST PONG destination address Base address of destination location for Channel x.

DMAC_DESCRx_PONG_CTL PONG control word All control settings for the PONG descriptor.

DMAC_DESCRx_PONG_STATUS PONG status word Validity, response, and real time Data_NR index status.

DMAC_INTR Interrupt register

DMAC_INTR_SET Interrupt set register When read, this register reflects the interrupt request register.

DMAC_INTR_MASK Interrupt mask Mask for corresponding field in INTR register.

DMAC_INTR_MASKED Interrupt masked register

When read, this register reflects a bit-wise and between the interrupt
request and mask registers. This register allows the software to read
the status of all mask-enabled interrupt causes with a single load
operation, rather than two load operations: one for the interrupt
causes and one for the masks. This simplifies firmware development.

50 PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

DMA Controller Modes

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B 51

6. Interrupts

The ARM Cortex-M0 (CM0) CPU in PSoC® 4 supports interrupts and exceptions. Interrupts refer to those events generated
by peripherals external to the CPU such as timers, serial communication block, and port pin signals. Exceptions refer to those
events that are generated by the CPU such as memory access faults and internal system timer events. Both interrupts and
exceptions result in the current program flow being stopped and the exception handler or interrupt service routine (ISR) being
executed by the CPU. PSoC 4 provides a unified exception vector table for both interrupt handlers/ISR and exception
handlers.

6.1 Features
PSoC 4 supports the following interrupt features:

■ Supports 32 interrupts

■ Nested vectored interrupt controller (NVIC) integrated with CPU core, yielding low interrupt latency

■ Vector table may be placed in either flash or SRAM

■ Configurable priority levels from 0 to 3 for each interrupt

■ Level-triggered and pulse-triggered interrupt signals

6.2 How It Works
Figure 6-1. PSoC 4 Interrupts Block Diagram

Figure 6-1 shows the interaction between interrupt signals and the Cortex-M0 CPU. PSoC 4 has 32 interrupts; these interrupt
signals are processed by the NVIC. The NVIC takes care of enabling/disabling individual interrupts, priority resolution, and
communication with the CPU core. The exceptions are not shown in Figure 6-1 because they are part of CM0 core generated
events, unlike interrupts, which are generated by peripherals external to the CPU.

Nested
Vectored
Interrupt

Controller
(NVIC)

Cortex-M0
Processor Core

IRQ0

Cortex-M0 Processor

IRQ1

IRQ31

Interrupt
signals from

PSoC 4 on-chip
peripherals

52 PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

Interrupts

6.3 Interrupts and Exceptions -
Operation

6.3.1 Interrupt/Exception Handling in
PSoC 4

The following sequence of events occurs when an interrupt
or exception event is triggered:

1. Assuming that all the interrupt signals are initially low
(idle or inactive state) and the processor is executing the
main code, a rising edge on any one of the interrupt lines
is registered by the NVIC. The interrupt line is now in a
pending state waiting to be serviced by the CPU.

2. On detecting the interrupt request signal from the NVIC,
the CPU stores its current context by pushing the
contents of the CPU registers onto the stack.

3. The CPU also receives the exception number of the
triggered interrupt from the NVIC. All interrupts and
exceptions in PSoC 4 have a unique exception number,
as given in Table 6-1. By using this exception number,
the CPU fetches the address of the specific exception
handler from the vector table.

4. The CPU then branches to this address and executes
the exception handler that follows.

5. Upon completion of the exception handler, the CPU
registers are restored to their original state using stack
pop operations; the CPU resumes the main code
execution.

Figure 6-2. Interrupt Handling When Triggered

When the NVIC receives an interrupt request while another
interrupt is being serviced or receives multiple interrupt
requests at the same time, it evaluates the priority of all
these interrupts, sending the exception number of the
highest priority interrupt to the CPU. Thus, a higher priority
interrupt can block the execution of a lower priority ISR at
any time.

Exceptions are handled in the same way that interrupts are
handled. Each exception event has a unique exception
number, which is used by the CPU to execute the
appropriate exception handler.

6.3.2 Level and Pulse Interrupts

PSoC 4 NVIC supports both level and pulse signals on the
interrupt lines (IRQ0 to IRQ31). The classification of an
interrupt as level or pulse is based on the interrupt source.

Figure 6-3. Level Interrupts

Figure 6-4. Pulse Interrupts

Figure 6-3 and Figure 6-4 show the working of level and
pulse interrupts, respectively. Assuming the interrupt signal
is initially inactive (logic low), the following sequence of
events explains the handling of level and pulse interrupts:

1. On a rising edge event of the interrupt signal, the NVIC
registers the interrupt request. The interrupt is now in the
pending state, which means the interrupt requests have
not yet been serviced by the CPU.

2. The NVIC then sends the exception number along with
the interrupt request signal to the CPU. When the CPU
starts executing the ISR, the pending state of the
interrupt is cleared.

3. When the ISR is being executed by the CPU, one or
more rising edges of the interrupt signal are logged as a
single pending request. The pending interrupt is serviced
again after the current ISR execution is complete (see
Figure 6-4 for pulse interrupts).

4. If the interrupt signal is still high after completing the ISR,
it will be pending and the ISR is executed again.
Figure 6-3 illustrates this for level triggered interrupts,
where the ISR is executed as long as the interrupt signal
is high.

Rising Edge on Interrupt Line is
registered by the NVIC

CPU detects the request signal
from NVIC and stores its

current context by pushing
contents onto the stack

CPU receives exception
number of triggered interrupt

and fetches the address of the
specific exception handle from

vector table.

CPU branches to the received
address and executes

exception handler

CPU registers are restored
using stack upon completion of

exception handler.

IRQn

CPU
Execution

State main
ISR ISR

main
ISR

main

IRQn is still high

IRQn

CPU
Execution

State main
ISR

main
ISR

main
ISR

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B 53

Interrupts

6.3.3 Exception Vector Table

The exception vector table (Table 6-1), stores the entry point addresses for all exception handlers in PSoC 4. The CPU
fetches the appropriate address based on the exception number.

In Table 6-1, the first word (4 bytes) is not marked as
exception number zero. This is because the first word in the
exception table is used to initialize the main stack pointer
(MSP) value on device reset; it is not considered as an
exception. In PSoC 4, the vector table can be configured to
be located either in flash memory (base address of
0x00000000) or SRAM (base address of 0x20000000). This
configuration is done by writing to the VECT_IN_RAM bit
field (bit 0) in the CPUSS_CONFIG register. When the
VECT_IN_RAM bit field is ‘1’, CPU fetches exception
handler addresses from the SRAM vector table location.
When this bit field is ‘0’ (reset state), the vector table in flash
memory is used for exception address fetches. You must
set the VECT_IN_RAM bit field as part of the device boot
code to configure the vector table to be in SRAM. The
advantage of moving the vector table to SRAM is that the
exception handler addresses can be dynamically changed
by modifying the SRAM vector table contents. However, the
nonvolatile flash memory vector table must be modified by a
flash memory write.

Reads of flash addresses 0x00000000 and 0x00000004 are
redirected to the first eight bytes of SROM to fetch the stack
pointer and reset vectors, unless the NO_RST_OVR bit of
the CPUSS_SYSREQ register is set. To allow flash read
from addresses 0x00000000 and 0x00000004, the
NO_RST_OVR bit should be set to ‘1’. The stack pointer
vector holds the address that the stack pointer is loaded with
on reset. The reset vector holds the address of the boot
sequence. This mapping is done to use the default
addresses for the stack pointer and reset vector from SROM
when the device reset is released. For reset, boot code in
SROM is executed first and then the CPU jumps to address
0x00000004 in flash to execute the handler in flash. The
reset exception address in the SRAM vector table is never
used because VECT_IN_RAM is 0 on reset.

Also, when the SYSREQ bit of the CPUSS_SYSREQ
register is set, reads of flash address 0x00000008 are

redirected to SROM to fetch the NMI vector address instead
of from flash. Reset CPUSS_SYSREQ to read the flash at
address 0x00000008.

The exception sources (exception numbers 1 to 15) are
explained in 6.4 Exception Sources. The exceptions marked
as Reserved in Table 6-1 are not used in PSoC 4, although
they have addresses reserved for them in the vector table.
The interrupt sources (exception numbers 16 to 47) are
explained in 6.5 Interrupt Sources.

6.4 Exception Sources
This section explains the different exception sources listed
in Table 6-1 (exception numbers 1 to 15).

6.4.1 Reset Exception

Device reset is treated as an exception in PSoC 4. It is
always enabled with a fixed priority of –3, the highest priority
exception. A device reset can occur due to multiple reasons,
such as power-on-reset (POR), external reset signal on
XRES pin, or watchdog reset. When the device is reset, the
initial boot code for configuring the device is executed out of
supervisory read-only memory (SROM). The boot code and
other data in SROM memory are programmed by Cypress,
and are not read/write accessible to external users. After
completing the SROM boot sequence, the CPU code
execution jumps to flash memory. Flash memory address
0x00000004 (Exception#1 in Table 6-1) stores the location
of the startup code in flash memory. The CPU starts
executing code out of this address. Note that the reset
exception address in the SRAM vector table will never be
used because the device comes out of reset with the flash
vector table selected. The register configuration to select the
SRAM vector table can be done only as part of the startup
code in flash after the reset is de-asserted.

Table 6-1. PSoC 4 Exception Vector Table

Exception Number Exception Exception Priority Vector Address

– Initial Stack Pointer Value Not applicable (NA)
Base_Address - 0x00000000 (start of flash memory) or
0x20000000 (start of SRAM)

1 Reset –3, the highest priority Base_Address + 0x04

2 Non Maskable Interrupt (NMI) –2 Base_Address + 0x08

3 HardFault –1 Base_Address + 0x0C

4-10 Reserved NA Base_Address + 0x10 to Base_Address + 0x28

11 Supervisory Call (SVCall) Configurable (0 - 3) Base_Address + 0x2C

12-13 Reserved NA Base_Address + 0x30 to Base_Address + 0x34

14 PendSupervisory (PendSV) Configurable (0 - 3) Base_Address + 0x38

15 System Timer (SysTick) Configurable (0 - 3) Base_Address + 0x3C

16 External Interrupt(IRQ0) Configurable (0 - 3) Base_Address + 0x40

… … Configurable (0 - 3) …

47 External Interrupt(IRQ31) Configurable (0 - 3) Base_Address + 0xBC

54 PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

Interrupts

6.4.2 Non-Maskable Interrupt (NMI)
Exception

Non-maskable interrupt (NMI) is the highest priority
exception other than reset. It is always enabled with a fixed
priority of –2. There are three ways to trigger an NMI
exception in PSoC 4:

■ NMI exception due to a hardware signal (user NMI
exception): PSoC 4 provides an option to trigger an
NMI exception using a digital signal. This digital signal is
referred to as irq_out[0] in Table 6-3. The NMI exception
triggered due to irq_out[0] will execute the NMI handler
pointed to by the active vector table (flash or SRAM
vector table).

■ NMI exception by setting NMIPENDSET bit (user NMI
exception): An NMI exception can be triggered in
software by setting the NMIPENDSET bit in the interrupt
control state register (CM0_ICSR register). Setting this
bit will execute the NMI handler pointed to by the active
vector table (flash or SRAM vector table).

■ System Call NMI exception: This exception is used for
nonvolatile programming operations in PSoC 4 such as
flash write operation and flash checksum operation. It is
triggered by setting the SYSCALL_REQ bit in the
CPUSS_SYSREQ register. An NMI exception triggered
by SYSCALL_REQ bit always executes the NMI
exception handler code that resides in SROM. Flash or
SRAM exception vector table is not used for system call
NMI exception. The NMI handler code in SROM is not
read/write accessible because it contains nonvolatile
programming routines that should not be modified by the
user.

6.4.3 HardFault Exception

HardFault is an always-enabled exception that occurs
because of an error during normal or exception processing.
HardFault has a fixed priority of –1, meaning it has higher
priority than any exception with configurable priority.
HardFault exception is a catch-all exception for different
types of fault conditions, which include executing an
undefined instruction and accessing an invalid memory
addresses. The CM0 CPU does not provide fault status
information to the HardFault exception handler, but it does
permit the handler to perform an exception return and
continue execution in cases where software has the ability
to recover from the fault situation.

6.4.4 Supervisor Call (SVCall) Exception

Supervisor Call (SVCall) is an always-enabled exception
caused when the CPU executes the SVC instruction as part
of the application code. Application software uses the SVC
instruction to make a call to an underlying operating system
and provide a service. This is known as a supervisor call.
The SVC instruction enables the application to issue a
supervisor call that requires privileged access to the system.
Note that the CM0 in PSoC 4 uses a privileged mode for the
system call NMI exception, which is not related to the SVCall
exception. (See the Chip Operational Modes chapter on

page 73 for details on privileged mode.) There is no other
privileged mode support for SVCall at the architecture level
in PSoC 4. The application developer must define the
SVCall exception handler according to the end application
requirements.

The priority of a SVCall exception can be configured to a
value between 0 and 3 by writing to the two bit fields
PRI_11[31:30] of the System Handler Priority Register 2
(SHPR2). When the SVC instruction is executed, the SVCall
exception enters the pending state and waits to be serviced
by the CPU. The SVCALLPENDED bit in the System
Handler Control and State Register (SHCSR) can be used
to check or modify the pending status of the SVCall
exception.

6.4.5 PendSV Exception

PendSV is another supervisor call related exception similar
to SVCall, normally being software-generated. PendSV is
always enabled and its priority is configurable. The PendSV
exception is triggered by setting the PENDSVSET bit in the
Interrupt Control State Register, CM0_ICSR. On setting this
bit, the PendSV exception enters the pending state, and
waits to be serviced by the CPU. The pending state of a
PendSV exception can be cleared by setting the
PENDSVCLR bit in the Interrupt Control State Register,
CM0_ICSR. The priority of a PendSV exception can be
configured to a value between 0 and 3 by writing to the two
bit fields PRI_14[23:22] of the System Handler Priority
Register 3 (CM0_SHPR3). See the ARMv6-M Architecture
Reference Manual for more details.

6.4.6 SysTick Exception

CM0 CPU in PSoC 4 supports a system timer, referred to as
SysTick, as part of its internal architecture. SysTick provides
a simple, 24-bit decrementing counter for various
timekeeping purposes such as an RTOS tick timer, high-
speed alarm timer, or simple counter. The SysTick timer can
be configured to generate an interrupt when its count value
reaches zero, which is referred to as SysTick exception. The
exception is enabled by setting the TICKINT bit in the
SysTick Control and Status Register (CM0_SYST_CSR).
The priority of a SysTick exception can be configured to a
value between 0 and 3 by writing to the two bit fields
PRI_15[31:30] of the System Handler Priority Register 3
(SHPR3). The SysTick exception can always be generated
in software at any instant by writing a one to the
PENDSTSETb bit in the Interrupt Control State Register,
CM0_ICSR. Similarly, the pending state of the SysTick
exception can be cleared by writing a one to the
PENDSTCLR bit in the Interrupt Control State Register,
CM0_ICSR.

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0419c/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0419c/index.html

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B 55

Interrupts

6.5 Interrupt Sources
PSoC 4 supports 32 interrupts (IRQ0 - IRQ31 or exception
numbers 16 - 47) from peripherals. The source of each
interrupt is listed in Table 6-3. PSoC 4 provides flexible
sourcing options for each of the 32 interrupt lines. Figure 6-5
shows the multiplexing options for interrupt source. Each
interrupt has two sources: a fixed-function interrupt source
and a DSI interrupt source. The CPUSS_INTR_SELECT
register is used to select between these sources.

Figure 6-5. Interrupt Source Multiplexing

Note The DSI interrupt signal naming (irq_out[n]) is not
readily accessible, but the PSoC Creator IDE simplifies the
task by doing the routing of the digital signals through the
DSI interrupt path. You do not need to manually configure
the DSI path.

The fixed-function interrupts include standard interrupts
from the on-chip peripherals such as TCPWM, serial
communication block, and CSD block. The fixed-function

interrupt generated is usually the logical OR of the different
peripheral states. The peripheral status register should be
read in the ISR to detect which condition generated the
interrupt. Fixed-function interrupts are usually level
interrupts, which require that the peripheral status register
be read in the ISR to clear the interrupt. If the status register
is not read in the ISR, the interrupt will remain asserted and
the ISR will be executed continuously.

The second category of interrupt sources is the DSI interrupt
signals. There are eight DSI channels with each channel
demultiplexed to four to spread across 32 interrupt sources
for Cortex M0. Any digital signal on the chip, such as digital
outputs from UDBs or digital input signals on pins, can be
routed as DSI interrupt sources. This provides flexibility in
the choice of interrupt sources. You also have the option of
routing the DSI signal through a rising edge detect circuit, as
shown in Figure 6-5. This edge detect circuit converts a
rising edge signal on the DSI line to a pulse signal two
system clocks wide. This ensures that the interrupt is
triggered once on the rising edge of the signal on the DSI
line. It is useful for interrupt sources, which cannot generate
proper level interrupt signals to the NVIC. The
UDB_INT_CFG register is used to select between the direct
DSI path and the edge detect path.

As the DSI interrupt channels are demultiplexed, the
maximum number of DSI interrupts, at a time, is limited to
eight.

See the I/O System chapter on page 53 for details on GPIO
interrupts.

DSI Interrupt
Source

Fixed Function Interrupt Source

Rising
Edge

Detect

0

1

IRQn
(n = 0 to 31)

Level

To NVIC

INT_CFG
register

0

1

INTR_SELECT
register

(irq_out[n])

Table 6-2. List of PSoC 4 Interrupt Sources

Interrupt
Cortex-M0

Exception No.
Fixed Function Interrupt Source DSI Interrupt Source

NMI (see Exception Sources on
page 53)

2 SYS_REQ udb.interrupts[0]:4

IRQ0 16 GPIO Interrupt - Port 0 udb.interrupts[0]:0

IRQ1 17 GPIO Interrupt - Port 1 udb.interrupts[1]:0

IRQ2 18 GPIO Interrupt - Port 2 udb.interrupts[2]:0

IRQ3 19 GPIO Interrupt - Port 3 udb.interrupts[3]:0

IRQ4 20 GPIO Interrupt - Port 4 udb.interrupts[4]:0

IRQ5 21 GPIO Interrupt - All Porta udb.interrupts[5]:0

IRQ6 22 LPCOMP (low-power comparator) udb.interrupts[6]:0

IRQ7 23 WDT (Watchdog timer) udb.interrupts[7]:0

IRQ8 24 SCB0 (Serial Communication Block 0) udb.interrupts[0]:1

IRQ9 25 SCB1 (Serial Communication Block 1) udb.interrupts[1]:1

IRQ10 26 SCB2 (Serial Communication Block 2) udb.interrupts[2]:1

IRQ11 27 SCB3 (Serial Communication Block 3) udb.interrupts[3]:1

IRQ12 28 CTBm Interrupt (all CTBms) udb.interrupts[4]:1

IRQ13 29 DMA Interrupt udb.interrupts[5]:1

IRQ14 30 SPCIF Interrupt udb.interrupts[6]:1

IRQ15 31 LVD Interrupt udb.interrupts[7]:1

IRQ16 32 SAR (Successive Approximation ADC) udb.interrupts[0]:2

IRQ17 33 CSD0 (CapSense) udb.interrupts[1]:2

56 PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

Interrupts

6.6 Exception Priority
Exception priority is useful for exception arbitration when
there are multiple exceptions that need to be serviced by the
CPU. PSoC 4 provides flexibility in choosing priority values
for different exceptions. All exceptions other than Reset,
NMI, and HardFault can be assigned a configurable priority
level. The Reset, NMI, and HardFault exceptions have a
fixed priority of –3, –2, and –1 respectively. In PSoC 4, lower
priority numbers represent higher priorities. This means that
the Reset, NMI, and HardFault exceptions have the highest
priorities. The other exceptions can be assigned a
configurable priority level between 0 and 3.

PSoC 4 supports nested exceptions in which a higher
priority exception can obstruct (interrupt) the currently active
exception handler. This pre-emption does not happen if the
incoming exception priority is the same as active exception.
The CPU resumes execution of the lower priority exception
handler after servicing the higher priority exception. The
CM0 CPU in PSoC 4 allows nesting of up to four exceptions.
When the CPU receives two or more exceptions requests of
the same priority, the lowest exception number is serviced
first.

The registers to configure the priority of exception numbers
1 to 15 are explained in Exception Sources on page 53.

The priority of the 32 interrupts (IRQ0 - IRQ31) can be
configured by writing to the Interrupt Priority registers
(CM0_IPR). This is a group of eight 32-bit registers with
each register storing the priority values of four interrupts, as
given in Table 6-3. The other bit fields in the register are not
used.

6.7 Enabling and Disabling
Interrupts

The NVIC provides registers to individually enable and
disable the 32 interrupts in software. If an interrupt is not
enabled, the NVIC will not process the interrupt requests on
that interrupt line. The Interrupt Set-Enable Register
(CM0_ISER) and the Interrupt Clear-Enable Register
(CM0_ICER) are used to enable and disable the interrupts
respectively. These registers are 32-bit wide and each bit
corresponds to the same numbered interrupt. These
registers can also be read in software to get the enable
status of the interrupts. Table 6-4 shows the register access
properties for these two registers. Note that writing zero to
these registers has no effect.

IRQ18 34 CSD1 (CapSense) udb.interrupts[2]:2

IRQ19 35 TCPWM0 (Timer/Counter/PWM 0) udb.interrupts[3]:2

IRQ20 36 TCPWM1 (Timer/Counter/PWM 1) udb.interrupts[4]:2

IRQ21 37 TCPWM2 (Timer/Counter/PWM 2) udb.interrupts[5]:2

IRQ22 38 TCPWM3 (Timer/Counter/PWM 3) udb.interrupts[6]:2

IRQ23 39 TCPWM4 (Timer/Counter/PWM 4) udb.interrupts[7]:2

IRQ24 40 TCPWM5 (Timer/Counter/PWM 5) udb.interrupts[0]:3

IRQ25 41 TCPWM6 (Timer/Counter/PWM 6) udb.interrupts[1]:3

IRQ26 42 TCPWM7 (Timer/Counter/PWM 7) udb.interrupts[2]:3

IRQ27 43 CAN0 Interrupt (only in PSoC 4200M) udb.interrupts[3]:3

IRQ28 44 CAN1 Interrupt (only in PSoC 4200M) udb.interrupts[4]:3

IRQ29 45 <DSI-only> udb.interrupts[5]:3

IRQ30 46 <DSI-only> udb.interrupts[6]:3

IRQ31 47 <DSI-only> udb.interrupts[7]:3
a. Port 5, Port 6, and Port 7 do not have dedicated interrupt vector number; they use vector IRQ5.

Table 6-2. List of PSoC 4 Interrupt Sources

Interrupt
Cortex-M0

Exception No.
Fixed Function Interrupt Source DSI Interrupt Source

Table 6-3. Interrupt Priority Register Bit Definitions

Bits Name Description

7:6 PRI_N0 Priority of interrupt number N.

15:14 PRI_N1 Priority of interrupt number N+1.

23:22 PRI_N2 Priority of interrupt number N+2.

31:30 PRI_N3 Priority of interrupt number N+3.

Table 6-4. Interrupt Enable/Disable Registers

Register Operation Bit Value Comment

Interrupt Set
Enable Register
(CM0_ISER)

Write
1 To enable the interrupt

0 No effect

Read
1 Interrupt is enabled

0 Interrupt is disabled

Interrupt Clear
Enable Register
(CM0_ICER)

Write
1 To disable the interrupt

0 No effect

Read
1 Interrupt is enabled

0 Interrupt is disabled

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B 57

Interrupts

The CM0_ISER and CM0_ICER registers are applicable
only for the interrupts (IRQ0 - IRQ31). These registers
cannot be used to enable or disable the exception numbers
1 to 11. The 15 exceptions have their own support for
enabling and disabling, as explained in Exception Sources
on page 53.

The PRIMASK register in Cortex-M0 (CM0) CPU can be
used as a global exception enable register to mask all the
configurable priority exceptions irrespective of whether they
are enabled. Configurable priority exceptions include all the
exceptions except Reset, NMI, and HardFault listed in
Table 6-1. They can be configured to a priority level
between 0 and 3, 0 being the highest priority and 3 being the
lowest priority. When the PM bit (bit 0) in the PRIMASK
register is set, none of the configurable priority exceptions
can be serviced by the CPU, though they can be in the
pending state waiting to be serviced by the CPU after the
PM bit is cleared.

6.8 Exception States
Each exception can be in one of the following states.

The Interrupt Control State Register (CM0_ICSR) contains
status bits describing the various exceptions states.

■ The VECTACTIVE bits ([8:0]) in the CM0_ICSR store the
exception number for the current executing exception.
This value is zero if the CPU does not execute any
exception handler (CPU is in thread mode). Note that the
value in VECTACTIVE bit fields is the same as the value
in bits [8:0] of the Interrupt Program Status Register
(IPSR), which is also used to store the active exception
number.

■ The VECTPENDING bits ([20:12]) in the CM0_ICSR
store the exception number of the highest priority
pending exception. This value is zero if there are no
pending exceptions.

■ The ISRPENDING bit (bit 22) in the CM0_ICSR
indicates if a NVIC generated interrupt (IRQ0 to IRQ31)
is in a pending state.

6.8.1 Pending Exceptions

When a peripheral generates an interrupt request signal to
the NVIC or an exception event occurs, the corresponding
exception enters the pending state. When the CPU starts
executing the corresponding exception handler routine, the
exception is changed from the pending state to the active
state.

The NVIC allows software pending of the 32 interrupt lines
by providing separate register bits for setting and clearing
the pending states of the interrupts. The Interrupt Set-
Pending register (CM0_ISPR) and the Interrupt Clear-
Pending register (CM0_ICPR) are used to set and clear the
pending status of the interrupt lines. These registers are 32
bits wide, and each bit corresponds to the same numbered
interrupt. Table 6-6 shows the register access properties for
these two registers. Note that writing zero to these registers
has no effect.

Setting the pending bit when the same bit is already set
results in only one execution of the ISR. The pending bit can
be updated regardless of whether the corresponding
interrupt is enabled. If the interrupt is not enabled, the
interrupt line will not move to the pending state until it is
enabled by writing to the CM0_ISER register.

Note that the CM0_ISPR and CM0_ICPR registers are used
only for the 32 peripheral interrupts (exception numbers 16-
47). These registers cannot be used for pending the
exception numbers 1 to 11. These 15 exceptions have their
own support for pending, as explained in Exception Sources
on page 53.

Table 6-5. Exception States

Exception State Meaning

Inactive
The exception is not active and not pend-
ing. Either the exception is disabled or the
enabled exception has not been triggered.

Pending
The exception request has been received
by the CPU/NVIC and the exception is
waiting to be serviced by the CPU.

Active

An exception that is being serviced by the
CPU but whose exception handler execu-
tion is not yet complete. A high-priority
exception can interrupt the execution of
lower priority exception. In this case, both
the exceptions are in the active state.

Active and Pending

The exception is being serviced by the
processor and there is a pending request
from the same source during its exception
handler execution.

Table 6-6. Interrupt Set Pending/Clear Pending Registers

Register Operation
Bit

Value
Comment

Interrupt Set-
Pending Regis-
ter (CM0_ISPR)

Write
1

To put an interrupt to
pending state

0 No effect

Read
1 Interrupt is pending

0 Interrupt is not pending

Interrupt Clear-
Pending Regis-
ter (CM0_ICPR)

Write
1

To clear a pending
interrupt

0 No effect

Read
1 Interrupt is pending

0 Interrupt is not pending

58 PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

Interrupts

6.9 Stack Usage for Exceptions
When the CPU executes the main code (in thread mode)
and an exception request occurs, the CPU stores the state
of its general-purpose registers in the stack. It then starts
executing the corresponding exception handler (in handler
mode). The CPU pushes the contents of the eight 32-bit
internal registers into the stack. These registers are the
Program and Status Register (PSR), ReturnAddress, Link
Register (LR or R14), R12, R3, R2, R1, and R0. Cortex-M0
has two stack pointers - MSP and PSP. Only one of the
stack pointers can be active at a time. When in thread mode,
the Active Stack Pointer bit in the Control register is used to
define the current active stack pointer. When in handler
mode, the MSP is always used as the stack pointer. The
stack pointer in Cortex-M0 always grows downwards and
points to the address that has the last pushed data.

When the CPU is in thread mode and an exception request
comes, the CPU uses the stack pointer defined in the control
register to store the general-purpose register contents. After
the stack push operations, the CPU enters handler mode to
execute the exception handler. When another higher priority
exception occurs while executing the current exception, the
MSP is used for stack push/pop operations, because the
CPU is already in handler mode. See the Cortex-M0
CPU chapter on page 35 for details.

The Cortex-M0 uses two techniques, tail chaining and late
arrival, to reduce latency in servicing exceptions. These
techniques are not visible to the external user and are done
as part of the internal processor architecture
(infocenter.arm.com/help/topic/com.arm.doc.ddi0419c/
index.html).

6.10 Interrupts and Low-Power
Modes

PSoC 4 allows device wakeup from low-power modes when
certain peripheral interrupt requests are generated. The
Wakeup Interrupt Controller (WIC) block generates a
wakeup signal that causes the device to enter Active mode
when one or more wakeup sources generate an interrupt
signal. After entering Active mode, the ISR of the peripheral
interrupt is executed.

The Wait For Interrupt (WFI) instruction, executed by the
CM0 CPU, triggers the transition into Sleep, Deep-Sleep,
and Hibernate modes. The sequence of entering the
different low-power modes is detailed in the Power
Modes chapter on page 75. Chip low-power modes have
three categories of fixed-function interrupt sources:

■ Fixed-function interrupt sources that are available in the
Active, Deep-Sleep, and Hibernate modes (GPIO
interrupts, low-power comparators).

■ Fixed-function interrupt sources that are available only in
the Active and Deep-Sleep modes (watchdog timer
interrupt, serial communication block interrupts)

■ Fixed-function interrupt sources that are available only in
the Active mode (all other fixed-function interrupts)

6.11 Exception - Initialization and
Configuration

This section covers the different steps involved in initializing
and configuring exceptions in PSoC 4.

1. Configuring the Exception Vector Table Location: The
first step in using exceptions is to configure the vector
table location as required - either in flash memory or
SRAM. This configuration is done by writing either a ‘1’
(SRAM vector table) or ‘0’ (flash vector table) to the
VECT_IN_RAM bit field (bit 0) in the CPUSS_CONFIG
register. This register write is done as part of device
initialization code.

It is recommended that the vector table be available in
SRAM if the application needs to change the vector
addresses dynamically. If the table is located in flash,
then a flash write operation is required to modify the vec-
tor table contents. PSoC Creator IDE uses the vector
table in SRAM by default.

2. Configuring Individual Exceptions: The next step is to
configure individual exceptions required in an
application.

a. Configure the exception or interrupt source; this
includes setting up the interrupt generation
conditions. The register configuration depends on
the specific exception required.

b. Define the exception handler function and write the
address of the function to the exception vector table.
Table 6-1 gives the exception vector table format; the
exception handler address should be written to the
appropriate exception number entry in the table.

c. Set up the exception priority, as explained in
Exception Priority on page 56.

d. Enable the exception, as explained in Enabling and
Disabling Interrupts on page 56.

http://infocenter.arm.com/help/topic/com.arm.doc.ddi0419c/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0419c/index.html

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B 59

Interrupts

6.12 Registers

6.13 Associated Documents
■ ARMv6-M Architecture Reference Manual - This document explains the ARM Cortex-M0 architecture, including the

instruction set, NVIC architecture, and CPU register descriptions.

Table 6-7. List of Registers

Register Name Description

CM0_ISER Interrupt Set-Enable Register

CM0_ICER Interrupt Clear Enable Register

CM0_ISPR Interrupt Set-Pending Register

CM0_ICPR Interrupt Clear-Pending Register

CM0_IPR Interrupt Priority Registers

CM0_ICSR Interrupt Control State Register

CM0_AIRCR Application Interrupt and Reset Control Register

CM0_SCR System Control Register

CM0_CCR Configuration and Control Register

CM0_SHPR2 System Handler Priority Register 2

CM0_SHPR3 System Handler Priority Register 3

CM0_SHCSR System Handler Control and State Register

CM0_SYST_CSR Systick Control and Status

CPUSS_CONFIG CPU Subsystem Configuration

CPUSS_SYSREQ System Request Register

CPUSS_INTR_SELECT Interrupt Multiplexer Select Register

UDB_INT_CFG UDB Subsystem Interrupt Configuration

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0419c/index.html

60 PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

Interrupts

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B 61

Section C: System-Wide Resources

This section encompasses the following chapters:

■ I/O System chapter on page 63

■ Clocking System chapter on page 73

■ Power Supply and Monitoring chapter on page 81

■ Chip Operational Modes chapter on page 85

■ Power Modes chapter on page 87

■ Watchdog Timer chapter on page 91

■ Reset System chapter on page 95

■ Device Security chapter on page 99

Top Level Architecture

System-Wide Resources Block Diagram

Deep Sleep
Hibernate

Active/Sleep

IO Subsystem

43x GPIO, 14x GPIO_OVT

IO
S

S
 G

P
IO

 (8
x

p
or

ts
)

System Resources

Power

Clock

WDT
ILO

Reset

Clock Control

DFT Logic
Test

IMO

DFT Analog

Sleep Control

PWRSYS
REF
POR LVD

NVLatches

BOD

WIC

Reset Control
XRES

Peripheral Interconnect (MMIO)PCLK

Power Modes High Speed I/O Matrix

62 PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B 63

7. I/O System

This chapter explains the PSoC® 4 I/O system, its features, architecture, operating modes, and interrupts. The general-
purpose I/O (GPIOs) pins in PSoC 4 are grouped into ports; a port can have a maximum of eight GPIOs. The PSoC 4100M/
4200M family has a maximum of 55 GPIOs arranged in eight ports, which include six overvoltage tolerant pins.

7.1 Features
The PSoC 4 GPIOs have these features:

■ Analog and digital input and output capabilities

■ Eight drive strength modes

■ Six overvoltage tolerant (OVT-GPIO) pins

■ Edge-triggered interrupts on rising edge, falling edge, or on both the edges, on pin basis

■ Slew rate control

■ Hold mode for latching previous state (used for retaining I/O state in Deep-Sleep mode)

■ Selectable CMOS and low-voltage LVTTL input buffer mode

■ Capsense Support

■ Segment LCD drive support

7.2 GPIO Interface Overview
PSoC 4 is equipped with analog and digital peripherals. Figure 7-1 shows an overview of routing between the peripherals and
pins.

Figure 7-1. GPIO Interface Overview

High Speed IO Matrix
(HSIOM)

G
P

IO

C
on

fig
uration

G
P

IO
 In

terrup
t

G
P

IO
 P

in

In
te

rfa
ce

GPIO Port Control

CSD
Controller

Segment
LCD

Control

Fixed
Function
Digital

Peripherals

UDB Array

Port
Adapter

SARMUX,
CTBm,

LPCOMP
CapSense Pin

AMUXBUS-A

AMUXBUS-B

IO Cell

DSI

64 PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

I/O System

GPIO pins are connected to I/O cells. These cells are equipped with an input buffer for the digital input, providing high input
impedance and a driver for the digital output signals. The digital peripherals connect to the I/O cells via the high-speed I/O
matrix (HSIOM). HSIOM contains multiplexers to connect between a peripheral selected by the user and the pin. HSIOM also
bridges the connection between the digital system interconnect (DSI) and the pins. This enables routing of pin signals to the
DSI-connected peripherals such as UDBs. The analog peripherals such as SAR ADC, Continuous Time Block-mini (CTBm),
Low Power Comparator (LPCOMP), and CapSense are either connected to the GPIO pins directly or through the AMUX
buses.

7.3 I/O Cell Architecture
Figure 7-2 shows the I/O cell architecture. It comprises of an input buffer and an output driver. This architecture is present in
every GPIO cell. It connects to the HSIOM multiplexers for the digital input and the output signal. Analog peripherals connect
directly to the pin.

Figure 7-2. I/O Cell Architecture in PSoC 4100M/4200M

Digital
Logic

Slew
Control

PORT_SLOW (GPIO_PRTx_PC[25])

GPIO_PRTx_PC[3y+2:3y]

In

OE

PIN

VDD

VDD VDD

D
ig

it
al

 O
u

tp
u

t
P

a
th

GPIO_PRTx_DR[y]

GPIO_DSI

DSI_GPIO

ACTIVE_0 (TCPWM)

ACTIVE_1 (SCB - UART)

ACTIVE_2 (CAN)

ACTIVE_3 (Reserved)

DEEP_SLEEP_1 (LCD - SEG)

DEEP_SLEEP_0 (LCD - COM)

OUTPUT ENABLE

HSIOM_PORT_SELx[4y+3:4y]

Pin Interrupt Signal

DATA
(GPIO_PRTx_INTR[y])

EDGE_SEL
(GPIO_PRTx_INTR_CFG[2y+1:2y])

SCB (SPI, I2C, UART), CAN

DATA (GPIO_PRTx_PS[y])

INP_DIS (GPIO_PRTx_PC2[y])

D
ig

it
al

 In
p

u
t

P
at

h

Switches
HSIOM_PORT_SELx[4y+3:4y]

AMUXBUS-A (CapSense Source)

AMUXBUS-B (CapSense Shield)

A
n

al
o

g

Dedicated Analog Resources (CTBm, LPCOMP, SAR ADC)

HSIOM

3

4

DEEP_SLEEP_2 (SCB – I2C)

DEEP_SLEEP_3 (SCB – SPI)

Input Buffer

Disable

Drive
Mode

 DSI

HSIOM

PORT_VTRIP_SEL (GPIO_PRTx_PC[24])

Buffer Mode Select

CMOS
LVTTL
CMOS 1.8V

HSIOM_PORT_SELx[4y+3:4y] 4

PORT_IB_MODE_SEL (GPIO_PRTx_PC[31:30]) 2
IO CELL

Input Buffer
 Output Driver

DSI_DSI

4

x – Port Number
y – Pin Number

VSS

VSS VSS

GPIO
Edge

Detect

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B 65

I/O System

7.3.1 Digital Input Buffer

The digital input buffer provides a high-impedance buffer for
the external digital input. The buffer is enabled and disabled
by the INP_DIS bit of the Port Configuration Register 2
(GPIO_PRTx_PC2, where x is the port number). The buffer
is configurable for the following modes:

■ CMOS

■ LVTTL

■ 1.8 V CMOS

These buffer modes are selected by the PORT_VTRIP_SEL
bit (GPIO_PRTx_PC[24]) and PORT_IB_MODE_SEL bits
(GPIO_PRTx_PC[31:30]) of the Port Configuration register.

The threshold values for each mode can be obtained from
the device datasheet. The output of the input buffer is
connected to the HSIOM for routing to the selected
peripherals. Writing to the HSIOM port select register
(HSIOM_PORT_SELx) selects the peripheral. The digital
input peripherals in the HSIOM, shown in Figure 7-2, are pin
dependent. See the device datasheet to know the functions
available for each pin.

7.3.2 Digital Output Driver

Pins are driven by the digital output driver. It consists of
circuitry to implement different drive modes and slew rate
control for the digital output signals. The peripheral connects

to the digital output driver through the HSIOM; a particular
peripheral is selected by writing to the HSIOM port select
register (HSIOM_PORT_SELx). Three banks of I/Os are
powered by the VDDD, VDDA, or VDDIO source. The following
table shows the ports in different banks and the I/O supply
source.

 Each GPIO pin has ESD diodes to clamp the pin voltage to
the I/O supply source. Ensure that the voltage at the pin
does not exceed the I/O supply voltage VDDIO/VDDD/VDDA
and drop below VSSIO/VSSD/VSSA under any circumstances.
For the absolute maximum and minimum GPIO voltage, see
the device datasheet. The digital output driver can be
enabled and disabled using the DSI signal from the
peripheral or the data register (GPIO_PRTx_DR) associated
with the output pin. See section 7.5 High-Speed I/O Matrix
to know about the peripheral source selection for the data
and to enable/disable control source selection.

7.3.2.1 Drive Modes

Each I/O is individually configurable into one of the eight
drive modes using the Port Configuration Register,
GPIO_PRTx_PC. Drive modes are listed in Table 7-3.
Figure 7-2 is a simplified output driver diagram that shows
the pin view based on each of the eight drive modes.

Table 7-1. Input Buffer Modes

PORT_VTRIP_SEL PORT_IB_MODE_SEL
Input Buffer

Mode

0b 0b or 10b CMOS

1b 0b or 10b LVTTL

x 1b or 11b 1.8V CMOS

Table 7-2. I/O Banks

Ports IO Supply Source

Port 0, Port 7 VDDD/VSSD

Port 1, Port 2, Port 5, VDDA/VSSA

Port 3, Port 4, Port 6, VDDIO/VSSIO

Table 7-3. Drive Mode Settings

GPIO_PRTx_PC ('x' denotes port number and 'y' denotes pin number)

Bits Drive Mode Value Data = 1 Data = 0

3y+2: 3y

SEL'y’ Selects Drive Mode for Pin 'y' (0  y  7)

High-Impedance Analog 0 High Z High Z

High-impedance Digital 1 High Z High Z

Resistive Pull Up 2 Weak 1 Strong 0

Resistive Pull Down 3 Strong 1 Weak 0

Open Drain, Drives Low 4 High Z Strong 0

Open Drain, Drives High 5 Strong 1 High Z

Strong Drive 6 Strong 1 Strong 0

Resistive Pull Up and Down 7 Weak 1 Weak 0

66 PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

I/O System

Figure 7-3. I/O Drive Mode Block Diagram

■ High-Impedance Analog

High-impedance analog mode is the default reset state; both
output driver and digital input buffer are turned off. This state
prevents an external voltage from causing a current to flow
into the digital input buffer. This drive mode is recommended
for pins that are floating or that support an analog voltage.
High-impedance analog pins cannot be used for digital
inputs. Reading the pin state register returns a 0x00
regardless of the data register value.

To achieve the lowest device current in low-power modes,
unused GPIOs must be configured to the high-impedance
analog mode.

■ High-Impedance Digital

High-impedance digital mode is the standard high-
impedance (High Z) state recommended for digital inputs. In
this state, the input buffer is enabled for digital input signals.

■ Resistive Pull-Up or Resistive Pull-Down

Resistive modes provide a series resistance in one of the
data states and strong drive in the other. Pins can be used
for either digital input or digital output in these modes. If
resistive pull-up is required, a ‘1’ must be written to that pin’s
Data Register bit. If resistive pull-down is required, a ‘0’ must
be written to that pin’s Data Register. Interfacing mechanical
switches is a common application of these drive modes. The
resistive modes are also used to interface PSoC with open
drain drive lines. Resistive pull-up is used when input is
open drain low and resistive pull-down is used when input is
open drain high.

■ Open Drain Drives High and Open Drain Drives Low

Open drain modes provide high impedance in one of the

data states and strong drive in the other. The pins can be
used as digital input or output in these modes. Therefore,
these modes are widely used in bi-directional digital
communication. Open drain drive high mode is used when
signal is externally pulled down and open drain drive low is
used when signal is externally pulled high.

A common application for open drain drives low mode is
driving I2C bus signal lines.

■ Strong Drive

The strong drive mode is the standard digital output mode
for pins; it provides a strong CMOS output drive in both high
and low states. Strong drive mode pins must not be used as
inputs under normal circumstances. This mode is often used
for digital output signals or to drive external transistors.

■ Resistive Pull-Up and Resistive Pull-Down

In the resistive pull-up and resistive pull-down mode, the
GPIO will have a series resistance in both logic 1 and logic 0
output states. The high data state is pulled up while the low
data state is pulled down. This mode is used when the bus is
driven by other signals that may cause shorts.

7.3.2.2 Slew Rate Control

GPIO pins have fast and slow output slew rate options in
strong drive mode; this is configured using PORT_SLOW bit
of the Port Configuration register (GPIO_PRTx_PC[25]).
Slew rate is individually configurable for each port. This bit is
cleared by default and the port works in fast slew mode. This
bit can be set if a slow slew rate is required. Slower slew
rate results in reduced EMI and crosstalk; hence, the slow
option is recommended for low-frequency signals or signals
without strict timing constraints.

DR
PS

Pin
DR
PS

Pin
DR
PS

Pin
DR
PS

Pin

DR
PS

Pin
DR
PS

Pin
DR
PS

Pin
DR
PS

Pin

0 . High Impedance
 Analog

1 . High Impedance
 Digital

2 . Resistive Pull Up 3 . Resistive Pull Down

4 . Open Drain,
 Drives Low

5 . Open Drain,
 Drives High

6 . Strong Drive 7 . Resistive Pull Up
 and Pull Down

Vdd Vdd

Vdd Vdd Vdd

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B 67

I/O System

7.4 GPIO-OVT Pin
Port 6 in the device has overvoltage tolerant (OVT) pins. Figure 7-4 shows the GPIO-OVT Pin Architecture.

Figure 7-4. GPIO-OVT Architecture in PSoC 4100M/4200M

Digital
Logic

Slew
Control

In

Output
Enable

PIN

VDDIO

2

Drive
Mode

GPIO-OVT
CELL

Input Buffer
 Output Driver

PORT_SLOW (GPIO_PRTx_PC[25])

GPIO_PRTx_PC[3y+2:3y]

D
ig

it
al

 O
u

tp
u

t
P

at
h

GPIO_PRTx_DR[y]

GPIO_DSI

DSI_DSI

DSI_GPIO

ACTIVE_0 (TCPWM)

ACTIVE_1 (SCB-UART)

DEEP_SLEEP_0 (LCD-COM)

DEEP_SLEEP_1 (LCD-SEG)

DEEP_SLEEP_2 (SCB-I2C)

DEEP_SLEEP_3 (SCB-SPI)

OUTPUT ENABLE

HSIOM_PORT_SELx[4y+3:4y]

Pin Interrupt Signal

DATA (GPIO_PRTx_INTR[y])

EDGE_SEL
(GPIO_PRTx_INTR_CFG[2y+1:2y])

D
ig

it
al

 I
n

p
u

t
P

at
h

HSIOM

3

SCB (SPI, I2C), CAN

DATA (GPIO_PRTx_PS[y])

 DSI

HSIOM

HSIOM_PORT_SELx[4y+3:4y]

4

PORT_IB_MODE_SEL (GPIO_PRTx_PC[31:30])

ACTIVE_2 (CAN)

ACTIVE_3 (Reserved)

C
M

O
S

D
river

Resistive Pull
Up/Pull Down

Over Voltage
Detect

PORT_VTRIP_SEL (GPIO_PRTx_PC[24])

PORT_SLEW_CTL (GPIO_PRTx_PC[29:28])

4

In
pu

t B
uf

fe
r

Buffer Mode Select

CMOS
LVTTL
CMOS 1.8V

INP_DIS (GPIO_PRTx_PC2[y]) Enables the buffer

Switches
HSIOM_PORT_SELx[4y+3:4y]

AMUXBUS-A (CapSense)

AMUXBUS-B (CapSense Shield)

A
n

a
lo

g

4

x - Port Number
y - Pin Number

GPIO
Edge

Detect

VSSIO

68 PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

I/O System

It is similar to regular GPIOs with the following additional
features:

■ Overvoltage tolerant - The GPIO-OVT cell has the
hardware (represented by “Overvoltage Detect” block in
Figure 7-4) to compare the VDDIO and the pin voltage. If

the pin voltage exceeds the VDDIO voltage, the output

driver is disabled and the pin is tristated. This results in
negligible current sink at the pin. Also, there are ESD
clamp diodes only between the pin and VSSIO to clamp

negative voltage spikes.

Note that in overvoltage conditions at the pin, the input
buffer data will not be valid if the external source’s speci-
fication of VOH and VOL do not match the trip points of
the input buffer.

■ Provides better pull-down drive strength when compared
to a regular GPIO.

■ Serial Communication Block (SCB) when configured as
I2C and its lines routed to GPIO-OVT pins; it meets the
following I2C specifications:

❐ Fast Mode Plus IOL Specification

❐ Fast Mode and Fast Mode Plus Hysteresis and mini-
mum fall time specifications

The minimum fall time specification is achieved with the
additional slew control feature configured using
PORT_SLEW_CTRL bits of Port Configuration register
(GPIO_PRTx_PC[29:28]). Table 7-4 shows the
PORT_SLEW_CTRL settings.

Note that to use the PORT_SLEW_CTRL, it is required to
configure the drive mode to open drain drive low mode. If
other drive modes are selected, PORT_SLEW_CTRL has
not effect.

7.5 High-Speed I/O Matrix
The high-speed I/O matrix (HSIOM) is a group of high-speed
switches that routes GPIOs to the peripherals inside the
device. As the GPIOs are shared for multiple functions,
HSIOM multiplexes the pin and connects to a particular
peripheral selected by the user. The HSIOM_PORT_SELx
register is provided to select the peripheral. It is a 32-bit
wide register available for each port, with each pin
occupying four bits. This provides up to 16 different options
for a pin as listed in Table 7-5.

Note The Active and Deep-Sleep sources are pin dependent. See the “Pinouts” section of the device datasheet for more
details on the features supported by each pin.

Table 7-4. Slew Rate Control

PORT_SLEW_CTRL
(GPIO_PRTx_PC[29:28])

Usage

00b Reserved

01b
I2C Fast Mode Plus (FM+) for exter-
nal I2C bus voltage > 2.8 V

10b Reserved

11b
I2C Fast Mode Plus (FM+) for exter-
nal I2C bus voltage  2.8 V

Table 7-5. PSoC 4100M/4200M HSIOM Port Settings

HSIOM_PORT_SELx ('x' denotes port number and 'y' denotes pin number)

Bits Name (SEL'y') Value Description (Selects pin 'y' source (0  y  7))

4y+3 : 4y

DR 0 Pin is regular firmware-controlled I/O or connected to dedicated hardware block.

DR_DSI 1 Output is firmware controlled, but OE is controlled from DSI.

DSI_DSI 2 Both output and OE are controlled from DSI.

DSI_DR 3 Output is controlled from DSI, but OE is firmware controlled.

CSD_SENSE 4 Pin is a CSD sense pin (analog mode).

CSD_SHIELD 5 Pin is a CSD shield pin (analog mode).

AMUXA 6 Pin is connected to AMUXBUS-A.

AMUXB 7
Pin is connected to AMUXBUS-B. This mode is also used for CSD I/O charging. When CSD I/O
charging is enabled in CSD_CONTROL, digital I/O driver is connected to csd_charge signal
(pin is still connected to AMUXBUS-B).

ACTIVE_0 8 Pin-specific Active source #0 (TCPWM, EXT_CLK)

ACTIVE_1 9 Pin-specific Active source #1 (SCB-UART)

ACTIVE_2 10 Pin-specific Active source #2 (CAN - only in PSoC 4200M).

ACTIVE_3 11 Reserved

DEEP_SLEEP_0 12 Pin-specific Deep-Sleep source #0 (LCD - COM)

DEEP_SLEEP_1 13 Pin-specific Deep-Sleep source #1 (LCD - SEG)

DEEP_SLEEP_2 14 Pin-specific Deep-Sleep source #2 (SCB-I2C, SWD, Wake up, LPCOMP)

DEEP_SLEEP_3 15 Pin-specific Deep-Sleep source #3 (SCB-SPI)

http://www.cypress.com/?rID=108039

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B 69

I/O System

7.6 I/O State on Power Up
During power up all the GPIOs are in high-impedance analog state and the input buffers are disabled. During run time, GPIOs
can be configured by writing to the associated registers. Note that the pins supporting debug access port (DAP) connections
(SWD lines) are always enabled as SWD lines during power-up. However, the DAP connection can be disabled or
reconfigured for general-purpose use through HSIOM. However, this reconfiguration takes place only after the device boots
and start executing code.

7.7 Behavior in Low-Power Modes
Table 7-6 shows the status of GPIOs in low-power modes.

7.8 Input and Output Synchronization
For digital input and output signals, the I/O provides synchronization with an internal clock or a digital signal as clock. By
default, HFCLK is used for synchronization but any other clock can also be used.

This feature is implemented using the UDB port adapter. See the Universal Digital Blocks (UDB) chapter on page 141 for
details on the port adapter.

7.9 Interrupt
In the PSoC 4 device, all the port pins have the capability to generate interrupts. There are three routing possibilities for the
pin signals to generate the interrupt, as shown in Figure 7-5.

Figure 7-5. Interrupt Signal Routing

■ Through the “GPIO Edge Detect” block and direct connection to the interrupt source multiplexer

■ Through the “GPIO Edge Detect” block and to the interrupt source multiplexer via DSI

■ Pin signal to the interrupt source multiplexer via DSI bypassing the “GPIO Edge Detect” block

Figure 7-6 shows the GPIO Edge Detect block architecture.

Table 7-6. PSoC 4100M/4200M I/Os in Low-Power Modes

Low-Power Mode Status

Sleep
■ Standard GPIO and GPIO-OVT pins are active and can be driven by peripherals such as CapSense, TCPWM,

and SCB, which can work in device sleep mode.

■ Inputs buffers are active; thus an interrupt on any I/O can be used to wake up the CPU.

Deep-Sleep
■ GPIO and GPIO-OVT pins, connected to the deep-sleep domain peripherals, are functional. Other pins, with its

output enabled, are in the frozen state.

■ Pin interrupts are functional on all I/Os.

Hibernate
■ Pin output states are latched and remain in the frozen state.

■ Pin interrupts are functional on all I/Os. Note that the input buffer of the GPIO and GPIO-OVT pins should not
be configured to 1.8 V CMOS mode. This mode is non-functional in hibernate mode.

Stop
■ GPIO and GPIO-OVT output states are latched and remain in the frozen state.

■ Interrupt on only port P2[2] wakes up the device; therefore, the input buffer is not configured to 1.8 V CMOS
mode. Input buffer on other pins are inactive.

GPIO Edge
Detect

Pin Signal
from

HSIOM

Port
Adapter

DSI

DSI route

Fixed function route

To the Interrupt
Source
Multiplexer

70 PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

I/O System

Figure 7-6. GPIO Edge Detect Block Architecture

An edge detector is present at each pin. It is capable of
detecting rising edge, falling edge, and both the edges
without any reconfiguration. The edge detector is configured
by writing into the EDGE_SEL bits of the Port Interrupt
Configuration register GPIO_PRTx_INTR_CFG as shown in
Table 7-7.

Besides the pins, edge detector is also present at the glitch
filter output. This filter can be used on one of the pins of a
port. The selection of a pin is done by writing to the
FLT_SEL field of the Port Interrupt Configuration register
GPIO_PRTx_INTR_CFG as shown in Table 7-8.

The edge detector outputs of a port are ORed together and
then routed to the interrupt controller (NVIC in the CPU
subsystem). Thus, there is only one interrupt vector per port.
On a pin interrupt, it is required to know which pin caused an
interrupt. This is done by reading the Port Interrupt Status
register GPIO_PRTx_INTR. This register not only includes
the information on which pin triggered the interrupt, it also
includes the pin status; thus allowing the CPU to read both
the information in a single read operation. This register has
one more important use; that is, to clear the interrupt.

Writing ‘1’ to the corresponding status bit clears the pin
interrupt. It is important to clear the interrupt status bit;
otherwise, the interrupt will occur repeatedly for a single
trigger or respond only once for multiple triggers, which is
explained later in this section. Also, note that when the Port
Interrupt Control Status register is read at the same time an
interrupt is occurring on the corresponding port, it can result
in the interrupt not being properly detected. Therefore, when
using GPIO interrupts, it is recommended to read the status
register only inside the corresponding interrupt service
routine and not in any other part of the code. Table 7-9
shows the Port Interrupt Status register bit fields.

The edge detector block output is routed to the Interrupt
Source Multiplexer shown in Figure 6-5 on page 55, which
gives an option of Level and Rising Edge detect. If the Level
option is selected, an interrupt is triggered repeatedly as
long as the Port Interrupt Status register bit is set. If the
Rising Edge detect option is selected, an interrupt is
triggered only once if the Port Interrupt Status register is not
cleared. Thus, it is important to clear the interrupt status bit if
the Edge Detect block is used.

There is a dedicated interrupt vector for each port when the
interrupt signal is routed through the fixed-function route.
However, when the signal is routed though the DSI, interrupt
vector is flexible and can occupy any of the 32 interrupt lines
of the NVIC. See the Interrupts chapter on page 51 for
details.

When the signal is routed to the DSI, bypassing the Edge
Detect block, the edge detection is configurable in the
Interrupt Source Multiplexer block. It is important to note that
if the multiplexer is configured as Level, the interrupt is
triggered repeatedly as long as the pin signal is high. It is
recommended to use the Rising Edge detect option when
this route is selected.

Edge Detector

Edge Detector

Edge Detector

Edge Detector

Edge Detector

Edge Detector

Edge Detector

Edge Detector

Edge Detector

50 ns Glitch Filter

Interrupt
Signal

Pin 1

Pin 2

Pin 3

Pin 4

Pin 0

Pin 5

Pin 6

Pin 7

Table 7-7. Edge Detector Configuration

EDGE_SEL Configuration

00 Interrupt is disabled

01 Interrupt on Rising Edge

10 Interrupt on Falling Edge

11 Interrupt on Both Edges

Table 7-8. Glitch filter Input Selection

FLT_SEL Selected Pin

000 Pin 0 is selected

001 Pin 1 is selected

010 Pin 2 is selected

011 Pin 3 is selected

100 Pin 4 is selected

101 Pin 5 is selected

110 Pin 6 is selected

111 Pin 7 is selected

Table 7-9. Port Interrupt Status Register

GPIO_PRTx_INTR Description

0000b to 0111b
Interrupt status on pin 0 to pin 7. Writing
‘1’ to the corresponding bit clears the
interrupt

1000b Interrupt status from the glitch filter

10000b to 10111 Pin 0 to Pin 7 status

11000b Glitch filter output status

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B 71

I/O System

7.10 Peripheral Connections

7.10.1 Firmware Controlled GPIO

See Table 7-5 to know the HSIOM settings for a firmware
controlled GPIO. GPIO_PRTx_DR is the data register used
to read and write the output data for the GPIOs. A write
operation to this register changes the GPIO output to the
written value. Note that a read operation reflects the output
data written to this register and not the current state of the
GPIOs. Using this register, read-modify-write sequences
can be safely performed on a port that has both input and
output GPIOs.

In addition to the data register, three other registers –
GPIO_PRTx_DR_SET, GPIO_PRTx_DR_CLR, and
GPIO_PRTx_INV – are provided to set, clear, and invert the
output data respectively of a specific pin in a port without
affecting other pins. Writing ‘1’ into these registers will set,
clear, or invert; writing ‘0’ will have no affect on the pin
status.

GPIO_PRTx_PS is the port I/O pad register that provides
the state of the GPIOs when read. Writes to this register
have no effect.

7.10.2 Analog I/O

Analog resources, such as LPCOMP, SARMUX, and CTBm,
which require low-impedance routing paths have dedicated
pins. Dedicated analog pins provide direct connections to
specific analog blocks. They help improve performance and

should be given priority over other pins when using these
analog resources. See the device datasheet for details on
these dedicated pins of PSoC 4.

To configure a GPIO as a dedicated analog I/O, it should be
configured in high-impedance analog mode (see Table 7-3)
and the respective connection should be enabled in the
specific analog resource. This can be done via registers
associated with the respective analog resources.

To configure a GPIO as an analog pin connecting to
AMUXBUS, it should be configured in high-impedance
analog mode and then routed to AMUXBUS using the
HSIOM_PORT_SELx register.

7.10.3 LCD Drive

All GPIOs have the capability of driving an LCD common or
segment. HSIOM_PORT_SELx registers are used to select
the pins for LCD drive. See the LCD Direct Drive chapter on
page 265 for details.

7.10.4 CapSense

The pins that support CSD can be configured as CapSense
widgets such as buttons, slider elements, touchpad
elements, or proximity sensors. CapSense also requires
external tank capacitors and shield lines. Table 7-5 shows
the GPIO and HSIOM settings required for CapSense. See
the CapSense chapter on page 277 for more information.

7.10.5 Serial Communication Block (SCB)

SCB, which can be configured as UART, I2C, and SPI, has
dedicated connections to the pin. See the device datasheet
for details on these dedicated pins of PSoC 4. When the
UART and SPI mode is used, the SCB controls the digital
output buffer drive mode for the input pin to keep the pin in
the high-impedance state. That is, the SCB block disables
the output buffer at the UART Rx pin and MISO pin when
configured as SPI master, and MOSI and select line when
configured as SPI slave. This overrides the drive mode
settings, which is done using the GPIO_PRTx_PC register.

7.11 Port Restrictions
Port 4 and higher ports do not have the port adapter
resulting in the following restrictions:

■ Cannot be routed through the DSI; thus UDB-based
digital signals cannot be routed to the pins of these ports

■ No input/output synchronization

However, these ports can be used in the following ways:

■ As GPIO controlled in firmware

■ Direct connection to TCPWM, SCB, or CAN

■ LCD and CapSense pins

■ Interrupts generation

Table 7-10. CapSense Settings

CapSense Pin
GPIO Drive Mode
(GPIO_PRTx_PC)

Digital Input Buffer Setting
(GPIO_PRTx_PC2)

HSIOM Setting

Sensor High-Impedance Analog Disable Buffer CSD_SENSE

Shield High-Impedance Analog Disable Buffer CSD_SHIELD

CMOD (normal operation) High-Impedance Analog Disable Buffer AMUXBUS A or CSD_COMP

CMOD (GPIO precharge, only available in select
GPIO)

High-Impedance Analog Disable Buffer AMUXBUS B or CSD_COMP

CSH TANK (GPIO precharge, only available in
select GPIO)

High-Impedance Analog Disable Buffer AMUXBUS B or CSD_COMP

http://www.cypress.com/?rID=108039
http://www.cypress.com/?rID=108039

72 PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

I/O System

7.12 Registers

Note The 'x' in the register name denotes the port number. For example, GPIO_PTR1_DR is the Port 1 output data register.

Table 7-11. I/O Registers

Name Description

GPIO_PRTx_DR Port Output Data Register

GPIO_PRTx_DR_SET Port Output Data Set Register

GPIO_PRTx_DR_CLR Port Output Data Clear Register

GPIO_PRTx_DR_INV Port Output Data Inverting Register

GPIO_PRTx_PS Port Pin State Register - Reads the logical pin state of I/O

GPIO_PRTx_PC Port Configuration Register - Configures the output drive mode, input threshold, and slew rate

GPIO_PRTx_PC2 Port Secondary Configuration Register - Configures the input buffer of I/O pin

GPIO_PRTx_INTR_CFG Port Interrupt Configuration Register

GPIO_PRTx_INTR Port Interrupt Status Register

HSIOM_PORT_SELx HSIOM Port Selection Register

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B 73

8. Clocking System

The PSoC® 4 clock system includes these clock resources:

■ Two internal clock sources:

❐ 3–48 MHz internal main oscillator (IMO) ±2 percent across all frequencies with trim

❐ 32-kHz internal low-speed oscillator (ILO) with ±60 percent accuracy with trim (can be calibrated using the IMO)

■ Two external clock sources:

❐ External clock (EXTCLK) generated using a signal from an I/O pin

❐ External 32-kHz watch crystal oscillator (WCO)

■ High-frequency clock (HFCLK) of up to 48 MHz, selected from IMO or external clock

■ Low-frequency clock (LFCLK) sourced by ILO or WCO

■ Dedicated prescaler for system clock (SYSCLK) of up to 48 MHz in PSoC 4200M and 24 MHz in PSoC 4100M sourced by
HFCLK

■ Sixteen 16-bit peripheral clock dividers

■ Four fractional dividers for accurate clock generation

■ Twenty-four digital and analog peripheral clocks

8.1 Block Diagram
Figure 8-1 gives a generic view of the clocking system in PSoC 4 devices.

74 PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

Clocking System

Figure 8-1. Clocking System Block Diagram

The four clock sources in the device are IMO, EXTCLK,
WCO, and ILO, as shown in Figure 8-1. The HFCLK mux
selects the HFCLK source from the EXTCLK or the IMO.
The HFCLK frequency can be a maximum of 48 MHz.

8.2 Clock Sources

8.2.1 Internal Main Oscillator

The internal main oscillator operates with no external
components and outputs a stable clock at frequencies
spanning 3–48 MHz in 1-MHz increments. Frequencies are
selected by setting the frequency in the CLK_IMO_TRIM2
register setting the IMO trim in the CLK_IMO_TRIM1
register, and finally setting the bandgap trim in
PWR_BG_TRIM4 and PWR_BG_TRIM5 registers. The
frequency setting in CLK_IMO_TRIM2 determines the IMO
frequency output. Table 8-1 provides the setting
corresponding to the IMO frequency output. In addition to
setting the frequency in CLK_IMO_TRIM2, the user needs
to load corresponding trim values in the CLK_IMO_TRIM1,
PWR_BG_TRIM4, and PWR_BG_TRIM5. Frequency
selection follows an algorithm to ensure no intermediate
state is programmed to a value higher than 48 MHz. Each
PSoC device has IMO trim settings determined during
manufacturing to meet datasheet specifications; the trim is
stored in manufacturing configuration data in SFLASH.
There are TRIM values corresponding to the frequency
selected by the user. The TRIM values from SFLASH are
loaded in the corresponding trim register –
CLK_IMO_TRIM1, PWR_BG_TRIM4, and
PWR_BG_TRIM5. These values may be loaded at startup to

achieve the desired configuration. Firmware can retrieve
these trim values and reconfigure the device to change the
frequency at run-time.

To configure the IMO frequency, follow this algorithm:

■ If ((new_freq >= 43 MHz) and (old_freq >= 43MHz)),

Change CLK_IMO_TRIM2 to a lower frequency such as
24 MHz

Apply CLK_IMO_TRIM1, PWR_BG_TRIM4, and
PWR_BG_TRIM5 for the new_freq

Wait >= 5us

Change CLK_IMO_TRIM2 to new_freq

■ else if (new_freq > old_freq),

Apply CLK_IMO_TRIM1, PWR_BG_TRIM4, and
PWR_BG_TRIM5 for new_freq

Wait >= 5us

Change CLK_IMO_TRIM2 to new_freq

■ else

Change CLK_IMO_TRIM2 to new_freq

Wait >= 5 cycles

Apply CLK_IMO_TRIM1, PWR_BG_TRIM4, and
PWR_BG_TRIM5 for new_freq

IMO

ILO

EXTCLK

LFCLK

SYSCLK
Prescaler SYSCLK

Divider 0
(/16)

PER0_CLK

Divider 15
(/16)

Fractional
Divider 0
(/16.5)

Fractional
Divider 3
(/16.5)

WCO

HFCLK

PER23_CLK

DPLL
TRIM

HFCLK Mux

LFCLK Mux

Peripheral
Dividers

HFCLK

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B 75

Clocking System

8.2.1.1 Startup Behavior

After reset, the IMO is configured for 24-MHz operation.
During the “boot” portion of startup, trim values are read
from flash and the IMO is configured to achieve datasheet
specified accuracy.

8.2.1.2 IMO Frequency Spread

The IMO is capable of operating in a spread-spectrum mode
to reduce the amplitude of noise generated at the IMO’s
central operating frequency. This mode causes the IMO to
vary in frequency across one of four distributions selected
by a register. The four distribution options are fixed
frequency, triangle wave, pseudo-random, and DSI input.
The DSI input mode allows you to specify the pattern with a
digital signal. The distribution options are selected with
register CLK_IMO_SPREAD bits SS_MODE, which are
shown in Table 8-2. The limits of the distribution are defined
with register CLK_IMO_SPREAD bits SS_RANGE, which
are shown in Table 8-3. All spread options are downspread,
meaning that instantaneous clock frequency values are
always at or below the configured frequency.

Table 8-1. IMO Frequency Configuration

CLK_IMO_TRIM2 Frequency in
MHzBit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0 0 0 0 1 1 3

0 0 0 1 0 0 4

0 0 0 1 0 1 5

0 0 0 1 1 0 6

0 0 0 1 1 1 7

0 0 1 0 0 0 8

0 0 1 0 0 1 9

0 0 1 0 1 0 10

0 0 1 0 1 1 11

0 0 1 1 0 0 12

0 0 1 1 1 0 13

0 0 1 1 1 1 14

0 1 0 0 0 0 15

0 1 0 0 0 1 16

0 1 0 0 1 0 17

0 1 0 0 1 1 18

0 1 0 1 0 0 19

0 1 0 1 0 1 20

0 1 0 1 1 0 21

0 1 0 1 1 1 22

0 1 1 0 0 0 23

0 1 1 0 0 1 24

0 1 1 0 1 1 25

0 1 1 1 0 0 26

0 1 1 1 0 1 27

0 1 1 1 1 0 28

0 1 1 1 1 1 29

1 0 0 0 0 0 30

1 0 0 0 0 1 31

1 0 0 0 1 0 32

1 0 0 0 1 1 33

1 0 0 1 0 1 34

1 0 0 1 1 0 35

1 0 0 1 1 1 36

1 0 1 0 0 0 37

1 0 1 0 0 1 38

1 0 1 0 1 0 39

1 0 1 0 1 1 40

1 0 1 1 1 0 41

1 0 1 1 1 1 42

1 1 0 0 0 0 43

1 1 0 0 0 1 44

1 1 0 0 1 0 45

1 1 0 0 1 1 46

1 1 0 1 0 0 47

1 1 0 1 0 1 48

Table 8-1. IMO Frequency Configuration

CLK_IMO_TRIM2 Frequency in
MHzBit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Table 8-2. IMO Spread-Spectrum Distribution Mode Bits SS_MODE

Name Description

SS_MODE[1:0]

IMO spread-spectrum mode. Defines the shape of the spread-spectrum frequency distribution.

0: Off. IMO frequency is not changed.

1: Triangle. IMO frequency forms a triangular distribution about the center frequency. Count limits are
defined by bits SS_MAX.

2: Pseudo-random sequence using LFSR. IMO frequency forms a pseudo-random distribution about the
center frequency.

3: DSI. IMO frequency distribution is determined using a DSI input signal.

76 PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

Clocking System

The SS_MAX field in the CLK_IMO_SPREAD register sets
the maximum count for the spread spectrum counters.
Increasing this value increases the entire cycle time of a
triangular spread when the SS_MODE is set to a triangular
spread.
The IMO spread spectrum logic requires a clock to be routed
to it for functionality. The logic uses the peripheral clock 0 as
its clock. The IMO spread spectrum needs the peripheral
clock 0 to be routed with an appropriate clock from a
peripheral clock divider. The frequency of this clock will
determine the rate of the spread spectrum logic and hence
the rate of change of the frequency.

8.2.1.3 Programming Clock (36-MHz)

The IMO block has a 36-MHz output, which is used as clock
for the flash programming block. This clock is only available
for the flash programming block and is not available as a
clock source into any of the clock dividers or the clock tree.

8.2.2 Internal Low-speed Oscillator

The internal low-speed oscillator operates with no external
components and outputs a stable clock at 32-kHz nominal.
The ILO is relatively low power and low accuracy. It can be
calibrated using a higher accuracy, high-frequency clock to
improve accuracy. The ILO is available in all power modes
except Hibernate and Stop modes. The ILO is used as the
system low-frequency clock LFCLK in PSoC 4. The ILO is a
relatively inaccurate (±60 percent overvoltage and
temperature) oscillator, which is used to generate low-
frequency clocks. If calibrated against the IMO when in
operation, the ILO is accurate to ±10 percent for stable
temperature and voltage. The ILO is enabled and disabled
with register CLK_ILO_CONFIG bit ENABLE.

8.2.3 External Clock (EXTCLK)

The external clock (EXTCLK) is a MHz range clock that can
be generated from a signal on a designated PSoC 4 pin.
This clock may be used instead of the IMO as the source of
the system high-frequency clock, HFCLK. The allowable
range of external clock frequencies is 0–48 MHz. PSoC 4
always starts up using the IMO and the external clock must
be enabled in user mode; so the device cannot be started
from a reset, which is clocked by the external clock.

When manually configuring a pin as the input to the
EXTCLK, the drive mode of the pin must be set to high-
impedance digital to enable the digital input buffer. See the I/
O System chapter on page 63 for more details.

8.2.4 Watch Crystal Oscillator (WCO)

The PSoC device contains an oscillator to drive a 32.768-
kHz watch crystal. It is used as one of the sources for
LFCLK. Similar to ILO, WCO is also available in all modes
except Hibernate and Stop modes. This clock has low power
consumption, which makes it ideal for operation in low-
power modes such as the Deep-Sleep mode. The WCO is
enabled and disabled with the WCO_CONFIG register’s
ENABLE bit.

WCO can be forced into low-power mode by setting the
WCO_CONFIG[0] bit. Alternatively, the block can be put in
the Auto mode where low-power mode transition happens
only when the device goes into Deep-Sleep mode. This
mode is enabled by setting WCO_CONFIG[1]. Note that the
Auto mode will be overridden if the block is forced to low-
power mode by setting WCO_CONFIG[0]. Auto mode
switches between normal and low-power mode of the WCO
based on the power mode of the device. During the
switching, the WCO output can experience some frequency
disturbances. Hence, Auto mode is not suggested for high-
accuracy applications such as RTC.

The difference in operation between the normal and low-
power mode is the amplifier gain. The low-power mode is
expected to have a lower amplifier gain to effectively reduce
power. The amplifier gain for the two modes can be set in
the WCO_TRIM register.

The IMO supports locking to the WCO. The WCO contains
the logic to measure and compare the IMO clock and trim
the IMO. The WCO implements a digital phased lock loop
scheme to support a clock accuracy of ±1 percent. The IMO
trimming logic of the WCO can be enabled by the use of the
DPLL_ENABLE bit of the WCO_CONFIG. The user
firmware, when using this feature, must make sure that
there is a minimum time of 500 ms between the WCO
enable and the DPLL_ENABLE events.

Table 8-3. IMO Spread Spectrum Distribution Range Bits SS_RANGE

Name Description

SS_RANGE[1:0]

IMO spread-spectrum maximum range. Defines the frequency spread from nominal at the extreme count
values of the spread-spectrum’s counter.

0: 1%. Spread-spectrum varies in frequency from 0 to –1% at the extreme count values.

1: 2%. Spread-spectrum varies in frequency from 0 to –2% at the extreme count values.

2: 4%. Spread-spectrum varies in frequency from 0 to –4% at the extreme count values.

3: Reserved. Do not use.

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B 77

Clocking System

8.3 Clock Distribution
PSoC 4 clocks are developed and distributed throughout the device, as shown in Figure 8-1. The distribution configuration
options are as follows:

■ HFCLK input selection

■ LFCLK input selection

■ SYSCLK prescaler configuration

■ Peripheral divider configuration

8.3.1 HFCLK Input Selection

HFCLK in PSoC 4 has two input options: IMO and EXTCLK. The HFCLK input is selected using the CLK_SELECT register’s
DIRECT_SEL bits, as described in Table 8-4.

8.3.2 LFCLK Input Selection

The LFCLK in PSoC 4 has two input options: ILO and WCO. The LFCLK is selected using the WDT_CONFIG register's
LFCLK_SEL bits, as shown in Table 8-5. The LFCLK selection can glitch if the selection is changed near an LFCLK edge.
The LFCLK clocks the watchdog timer (WDT); therefore, ensure that the LFCLK source switching does not affect the WDT.
To safely change LFCLK_SEL, wait for WDT_CTRLOW/WDT_CTRHIGH to change; then, change the setting immediately.

8.3.3 SYSCLK Prescaler Configuration

The SYSCLK Prescaler allows the device to divide the HFCLK before use as SYSCLK, which allows for non-integer
relationships between peripheral clocks and the system clock. SYSCLK must be equal to or faster than all other clocks in the
device that are derived from HFCLK. The SYSCLK prescaler is capable of dividing the HFCLK by powers of 2 between 2^0 =
1 and 2^7 = 128. The prescaler divide value is set using register CLK_SELECT bits SYSCLK_DIV, as described in Table 8-6.
The prescaler is initially configured to divide by 1.

8.3.4 Peripheral Clock Divider Configuration

PSoC 4 has 20 clock dividers, which include sixteen 16-bit clock dividers and four 16.5-bit fractional clock dividers. Fractional
clock dividers allow the clock divisor to include a fraction of 0..31/32. The formula for the output frequency of a fractional
divider is Fout = Fin / (INT16_DIV + (FRAC5_DIV/32)). For example, a 16.5-divider with an integer divide value of 3
(INT16_DIV=3, FRAC5_DIV=0), produces signals to generate a 16-MHz clock from a 48-MHz HFCLK. A 16.5-divider with an
integer divide value of 4 (INT16_DIV=4, FRAC5_DIV=0), produces signals to generate a 12-MHz clock from a 48-MHz
HFCLK. A 16.5-divider with an integer divide value of 3 (INT16_DIV=3) and a fractional divider of 16 (FRAC5_DIV=16)
produces signals to generate a 13.7-MHz clock from a 48-MHz HFCLK. Not all 13.7-MHz clock periods are equal in size; half
of them will be 3 HFCLK cycles and half of them will be 2 HFCLK cycles.

Fractional dividers are useful when a high-precision clock is required (for example, for a UART/SPI serial interface).
Fractional dividers are not used when a low jitter clock is required, because the clock periods have a jitter of 1 HFCLK cycle.

The divide value for each of the 16 integer clock dividers are configured with the PERI_DIV_16_CTLx registers and the four

Table 8-4. HFCLK Input Selection Bits DIRECT_SEL

Name Description

DIRECT_SEL[2:0]

HFCLK input clock selection

0: IMO. Uses the IMO as the source of the HFCLK

1: EXTCLK. Uses the EXTCLK as the source of the HFCLK

2–7: Reserved. Do not use

Table 8-5. LFCLK Input Selection Bits LFCLK_SEL

Name Description

LFCLK_SEL[1:0]

LFCLK input clock selection

0: ILO. Uses the internal local oscillator as the source of the LFCLK

1: WCO. Uses the Watch Crystal Oscillator as the source of the LFCLK

2-3: Reserved. Do not use

78 PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

Clocking System

16.5-bit fractional clock dividers are configured with the PERI_DIV_16_5_CTLx registers. Table 8-6 and Table 8-7 describe
the configurations for these registers.

Each divider can be enabled using the PERI_DIV_CMD register. This register acts as the command register for all 16 integer
dividers and four fractional dividers. The format of the PERI_DIV_CMD register is as follows.

The SEL_TYPE field specifies the type of divider being configured. This field is '1' for the 16-bit integer divider and '2' for the
16.5-bit fractional divider.

The SEL_DIV field specifies the number of the specific divider being configured. For the integer dividers, this number ranges
from 0 to 15. For fractional dividers, this field is any value in the range 0 to 3. When SEL_TYPE = 63 and SEL_TYPE = 3, no
divider is specified.

The (PA_SEL_TYPE, PA_SEL_DIV) field pair allows a divider to be phase-aligned with another divider. The PA_SEL_DIV
specifies the divider which is phase aligned. Any enabled divider can be used as a reference. The PA_SEL_TYPE specifies
the type of the divider being phase aligned. When PA_SEL_DIV = 63 and PA_SEL_TYPE = 3, HFCLK is used as a reference.

Consider a 48-MHz HFCLK and a need for a 12-MHz divided clock A and a 8-MHz divided clock B. Clock A uses a 16-bit
integer divider 0 and is created by aligning it to HF_CLK ((PA_SEL_TYPE, PA_SEL_DIV) is (3, 63)) and
DIV_16_CTL0.INT16_DIV is 3. Clock B uses the integer divider 1 and is created by aligning it to clock A ((PA_SEL_TYPE,
PA_SEL_DIV) is (1, 0)) and DIV_16_CTL1.INT16_DIV is 5. This guarantees that clock B is phase-aligned with clock A as the
smallest common multiple of the two clock periods is 12 HFCLK cycles, the clocks A and B will be aligned every 12 HFCLK
cycles. Note that clock B is phase-aligned to clock A, but still uses HFCLK as a reference clock for its divider value.

Each peripheral block in PSoC has a unique peripheral clock (PER#_CLK) associated with it. Each of the peripheral clocks
have a multiplexed input, which can take the input clock from any of the existing clock dividers.

Table 8-9 shows the mapping of the mux output to the corresponding peripheral blocks (shown in Figure 8-1). Any of the
peripheral clock dividers can be mapped to a specific peripheral by using their respective PERI_PCLK_CTLx register, as
described in Table 8-9.

Table 8-6. Non-Fractional Peripheral Clock Divider Configuration Register PERI_DIV_16_CTLx

Bits Name Description

0 ENABLE_x
Divider enabled. HW sets this field to '1' as a result of an ENABLE command. HW sets this field to '0' as
a result on a DISABLE command.

23:8 INT16_DIV_x Integer division by (1+INT16_DIV). Allows for integer divisions in the range [2, 65,536].

Table 8-7. Fractional Peripheral Clock Divider Configuration Register PERI_DIV_16_5_CTLx

Bits Name Description

0 ENABLE_x
Divider enabled. HW sets this field to '1' as a result of an ENABLE command. HW sets this field to '0' as
a result on a DISABLE command.

7:3 FRAC5_DIV_x
Fractional division by (FRAC5_DIV/32). Allows for fractional divisions in the range [0, 31/32].

Note that fractional division results in clock jitter as some clock periods may be 1 "clk_hf" cycle longer
than other clock periods.

23:8 INT16_DIV_x Integer division by (1+INT16_DIV). Allows for integer divisions in the range [1, 65,536].

Table 8-8. Peripheral Clock Multiplexer Output Mapping

Peripheral Clock # Peripheral

0 IMO (Spread Spectrum)

1 CLOCK_PUMP

2 SCB0

3 SCB1

4 SCB2

5 SCB3

6 CSD0_ CLK0

7 CSD0_ CLK1

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B 79

Clocking System

8.4 Low-Power Mode Operation
The high-frequency clocks including the IMO, EXTCLK, HFCLK, SYSCLK, and peripheral clocks operate only in Active and
Sleep modes. The ILO, WCO, and LFCLK operate in all power modes except Hibernate and Stop.

8 CSD1_CLK0

9 CSD 1_CLK1

10 SAR

11 TCPWM0

12 TCPWM1

13 TCPWM2

14 TCPWM3

15 TCPWM4

16 TCPWM5

17 TCPWM6

18 TCPWM7

19 UDB0 (only for PSoC 4200M)

20 UDB1 (only for PSoC 4200M)

21 UDB2 (only for PSoC 4200M)

22 UDB3 (only for PSoC 4200M)

23 LCD

Table 8-9. Programmable Clock Control Register - PERI_PCLK_CTLx

Bits Name Description

5:0 SEL_DIV

Specifies one of the dividers of the divider type specified by SEL_TYPE. If SEL_DIV is "4" and SEL_TYPE is
"1", then the fifth (zero being first) 16-bit clock divider will be routed to the mux output for peripheral clock_x.
Similarly, if SEL_DIV is "0" and SEL_TYPE is "2", then the first 16.5 clock divider will be routed to the mux
output.

7:6 SEL_TYPE

0: Do not use

1: 16.0 (integer) clock dividers

2: 16.5 (fractional) clock dividers

3: Do not use

Table 8-8. Peripheral Clock Multiplexer Output Mapping

Peripheral Clock # Peripheral

80 PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

Clocking System

8.5 Register List

Table 8-10. Clocking System Register List

Register Name Description

CLK_IMO_TRIM1 IMO Trim Register - This register contains IMO trim, allowing fine manipulation of its frequency.

CLK_IMO_TRIM2
IMO Frequency Selection Register - This register controls the frequency range of the IMO, allowing gross
manipulation of its frequency.

PWR_BG_TRIM4 Bandgap Trim Registers - These registers control the trim of the bandgap reference, allowing manipulation of
the voltage references in the device.PWR_BG_TRIM5

CLK_IMO_SPREAD IMO Spread Spectrum Control Register - This register controls the IMO spread spectrum functionality.

CLK_ILO_CONFIG ILO Configuration Register - This register controls the ILO configuration.

CLK_IMO_CONFIG IMO Configuration Register - This register controls the IMO configuration.

CLK_SELECT
Clock Select - This register controls clock tree configuration, selecting different sources for the system
clocks.

WCO_CONFIG WCO Enable. This register enables or disables the external watch crystal oscillator.

PERI_DIV_16_CTLx
Peripheral Clock Divider Control Registers - These registers configure the peripheral clock dividers, setting
integer divide value, and enabling or disabling the divider.

PERI_DIV_16_5_CTLx
Peripheral Clock Fractional Divider Control Registers - These registers configure the peripheral clock divid-
ers, setting fractional divide value, and enabling or disabling the divider.

PERI_PCLK_CTLx Programmable Clock Control Registers - These registers are used to select the input clocks to peripherals.

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B 81

9. Power Supply and Monitoring

PSoC® 4 is capable of operating from a 1.71 V to 5.5 V externally supplied voltage. This is supported through one of the two
following operating ranges:

■ 1.80 V to 5.50 V supply input to the internal regulators

■ 1.71 V to 1.89 V direct supply

PSoC 4 devices have different internal regulators to support the various power modes. These include Active digital regulator,
Quiet regulator, Deep-Sleep regulator, and Hibernate regulator.

9.1 Block Diagram

Figure 9-1. Power System Block Diagram

Digital
Regulator

VDDD
VDDA1

0.1 uF 1 uF

V
D

D
D

V
D

D
A

1

V
C

C
D

Active
Domain

Examples: CPU,
IMO, Flash

Quiet
Regulator

Deep-Sleep
Regulator

Hibernate
Regulator

1 uF0.1 uF

Bandgap
Voltage

Reference

Deep-Sleep
Domain

Examples: ILO,
WCO, I2C

Hibernate
Domain

Examples: LP
COMP, SRAM,

UDB

Analog
Domain

Examples: CTBm,
SAR

V
S

S

V
S

S
A

Note: Do not connect
external load to VCCD

1 uF

Analog
Domain

Example: CTBm

VDDA2

1 uF

IOs

VDDIO

V
S

S

0.1 uF
0.1 uF1 uF

V
D

D
A

2

V
D

D
IO

82 PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

Power Supply and Monitoring

Figure 9-1 shows the power system diagrams and all the
power supply pins as implemented for the PSoC 4. The sys-
tem has one regulator in Active mode for the digital circuitry.
There is no analog regulator; the analog circuits run directly
from the VDDA input. There are separate regulators for the
Deep-Sleep and Hibernate (lowered power supply and
retention) modes. There is a separate low-noise quiet regu-
lator for the bandgap voltage references. The supply voltage
range is 1.71 to 5.5 V with all functions and circuits operat-
ing over that range. The PSoC 4 allows two distinct modes
of power supply operation: unregulated external supply and
regulated external supply modes. See the "Power" Section
in the device datasheet for details on power supply connec-
tions.

9.2 How It Works

The regulators in Figure 9-1 power the various domains of
the device. All the core regulators draw their input power
from the VDDD pin supply. Digital I/Os are supplied from

VDDIO. The analog circuits run directly from the VDDA inputs.

9.2.1 Regulator Summary

The Active digital regulator and Quiet regulator are enabled
during the Active or Sleep power modes. They are turned off
in the Deep-Sleep and Hibernate power modes (see
Table 11-1 and Figure 9-1). The Deep-Sleep and Hibernate
regulators are designed to fulfill power requirements in the
low-power modes of the device.

9.2.1.1 Active Digital Regulator

For external supplies from 1.8 V and 5.5 V, the Active digital
regulator provides the main digital logic in Active and Sleep
modes. This regulator has its output connected to a pin
(VCCD) and requires an external decoupling capacitor (1 µF

X5R).

For supplies below 1.8 V, VCCD must be supplied directly. In
this case, VCCD, VDDD, VDDA1, VDDA2, and VDDIO must be

shorted together.

The Active digital regulator can be disabled by setting the
EXT_VCCD bit in the PWR_CONTROL register. This
reduces the power consumption in direct supply mode. The

Active digital regulator is available only in Active and Sleep
power modes.

9.2.1.2 Quiet Regulator

In Active and Sleep modes, this regulator supplies analog
circuits such as the bandgap reference and capacitive sens-
ing subsystem, which require a quiet supply, free of digital
switching noise and power supply noise. This regulator has
a high-power supply rejection ratio. The Quiet regulator is
available only in Active and Sleep power modes.

9.2.1.3 Deep-Sleep Regulator

This regulator supplies the circuits that remain powered in
Deep-Sleep mode, such as the ILO, WCO, and SCB. The
Deep-Sleep regulator is available in all power modes except
the Hibernate mode. In Active and Sleep power modes, the
main output of this regulator is connected to the output of
the Active digital regulator (VCCD). This regulator also has a

separate replica output that provides a stable voltage for the
low-speed clock resources. This output is not connected to
VCCD in Active and Sleep modes.

9.2.1.4 Hibernate Regulator

This regulator supplies the circuits that remain powered in
Hibernate mode, such as the sleep controller, low-power
comparator, and SRAM. The Hibernate regulator is available
in all power modes. In Active and Sleep modes, the output
of this regulator is connected to the output of the digital reg-
ulator. In Deep-Sleep mode, the output of this regulator is
connected to the output of the Deep-Sleep regulator.

9.3 Voltage Monitoring

The voltage monitoring system includes power-on-reset
(POR), brownout detection (BOD), and low-voltage detec-
tion (LVD).

9.3.1 Power-On-Reset (POR)

POR circuits provide a reset pulse during the initial power
ramp. POR circuits monitor VCCD voltage. Typically, the

POR circuits are not very accurate with respect to trip-point.

POR circuits are used during initial chip power-up and then
disabled.

9.3.1.1 Brownout-Detect (BOD)

The BOD circuit protects the operating or retaining logic
from possibly unsafe supply conditions by applying reset to
the device. BOD circuit monitors the VCCD voltage. The

BOD circuit generates a reset if a voltage excursion dips
below the minimum VCCD voltage required for safe operation

(see the device datasheet for details). The system will not
come out of RESET until the supply is detected to be valid
again.

Table 9-1. Regulator Status in Different Power Modes

Mode
Active

Regulator
Quiet

Regulator
Deep-Sleep
Regulator

Hibernate
Regulator

Stop Off Off Off Off

Hibernate Off Off Off On

Deep Sleep Off Off On On

Sleep On On On On

Active On On On On

http://www.cypress.com/?rID=108039
http://www.cypress.com/?rID=108039

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B 83

Power Supply and Monitoring

To enable firmware to distinguish a normal power cycle from
a brownout event, a special register is provided
(PWR_BOD_KEY), which will not be cleared after a BOD
generated RESET. However, this register will be cleared if
the device goes through POR or XRES. BOD is available in
all power modes except the Stop mode.

9.3.1.2 Low-Voltage-Detect (LVD)

The LVD circuit monitors external supply voltage and accu-
rately detects depletion of the energy source. The LVD
detector generates an interrupt to cause the system to take
preventive measures.

The LVD is available only in Active and Sleep power modes.
If LVD is required in Deep-Sleep mode, then the chip should
be configured to periodically wake up from deep sleep using
WDT as the wake up source; the LVD monitoring should be
done in Active mode. LVD circuits generate interrupts at pro-
grammable levels within the safe operating voltage. The trip
point of the LVD can be configured between 1.75 V to 4.5 V

using the LVD_SEL field in the PWR_VMON_CONFIG reg-
ister.

When enabling the LVD circuit, it is possible to get a false
interrupt during the initial settling time. Firmware can mask
this by waiting for 1 µs after setting the LVD_EN bit in
PWR_VMON_CONFIG register. The recommended firm-
ware procedure to enable the LVD function is:

1. Ensure that the LVD bit in the PWR_INTR_MASK regis-
ter is 0 to prevent propagating a false interrupt.

2. Set the required trip-point in the LVD_SEL field of the
PWR_VMON_CFG register.

3. Enable the LVD by setting the LVD_EN bit in
PWR_VMON_CFG. This may cause a false LVD event.

4. Wait at least 1 µs for the circuit to stabilize.

5. Clear the false event by writing a ‘1’ to the LVD bit in the
PWR_INTR register. The bit will not clear if the LVD con-
dition is truly present.

6. Unmask the interrupt using the LVD bit in
PWR_INTR_MASK.

9.4 Register List

Table 9-2. Power Supply and Monitoring Register List

Register Name Description

PWR_CONTROL
Power Mode Control Register – This register allows configuration of device power modes and regulator
activity.

PWR_INTR Power System Interrupt Register – This register indicates the power system interrupt status.

PWR_INTR_MASK
Power System Interrupt Mask Register – This register controls which interrupts are propagated to the
interrupt controller of the CPU.

PWR_VMON_CONFIG
Power System Voltage Monitoring Trim and Configuration – This register contains trim and configuration
bits for the voltage monitoring system.

84 PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

Power Supply and Monitoring

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B 85

10. Chip Operational Modes

PSoC® 4 is capable of executing firmware in four different modes. These modes dictate execution from different locations in
Flash and ROM, with different levels of hardware privileges. Only three of these modes are used in end-applications; debug
mode is used exclusively to debug designs during firmware development.

PSoC 4’s operational modes are:

■ Boot

■ User

■ Privileged

■ Debug

10.1 Boot
Boot mode is an operational mode where the device is configured by instructions hard-coded in the device SROM. This mode
is entered after the end of a reset, provided no debug-acquire sequence is received by the device. Boot mode is a privileged
mode; interrupts are disabled in this mode so that the boot firmware can set up the device for operation without being inter-
rupted. During boot mode, hardware trim settings are loaded from nonvolatile (NV) latches to guarantee proper operation dur-
ing power-up. When boot concludes, the device enters user mode and code execution from flash begins. This code in flash
may include automatically generated instructions from the PSoC Creator IDE that will further configure the device.

10.2 User
User mode is an operational mode where normal user firmware from flash is executed. User mode cannot execute code from
SROM. Firmware execution in this mode includes the automatically generated firmware by the PSoC Creator IDE and the
firmware written by the user. The automatically generated firmware can govern both the firmware startup and portions of nor-
mal operation. The boot process transfers control to this mode after it has completed its tasks.

10.3 Privileged
Privileged mode is an operational mode, which allows execution of special subroutines that are stored in the device ROM.
These subroutines cannot be modified by the user and are used to execute proprietary code that is not meant to be inter-
rupted or observed. Debugging is not allowed in privileged mode.

The CPU can transition to privileged mode through the execution of a system call. For more information on how to perform a
system call, see Performing a System Call on page 300. Exit from this mode returns the device to user mode.

10.4 Debug
Debug mode is an operational mode that allows observation of the PSoC 4 operational parameters. This mode is used to
debug the firmware during development. The debug mode is entered when an SWD debugger connects to the device during
the acquire time window, which occurs during the device reset. Debug mode allows IDEs such as PSoC Creator and ARM
MDK to debug the firmware. Debug mode is only available on devices in open mode (one of the four protection modes). For
more details on the debug interface, see the Program and Debug Interface chapter on page 293.

For more details on protection modes, see the Device Security chapter on page 99.

86 PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

Chip Operational Modes

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B 87

11. Power Modes

The PSoC® 4 provides five power modes, intended to minimize the average power consumption for a given application. The
power modes, in the order of decreasing power consumption, are:

■ Active

■ Sleep

■ Deep-Sleep

■ Hibernate

■ Stop

Active, Sleep, and Deep-Sleep are standard ARM-defined power modes, supported by the ARM CPUs and instruction set
architecture (ISA). Hibernate and Stop modes are additional low-power modes supported by PSoC 4. These modes are
entered from firmware similar to Deep-Sleep, but on wakeup, the CPU and all peripherals go through a reset.

The power consumption in different power modes is controlled by using the following methods:

■ Enabling/disabling peripherals

■ Powering on/off internal regulators

■ Powering on/off clock sources

■ Powering on/off other portions of the PSoC 4

Figure 11-1 illustrates the various power modes and the possible transitions between them.

Figure 11-1. Power Mode Transitions State Diagram

ACTIVE

DEEP-SLEEP

HIBERNATE

Wakeup
Interrupt

Wakeup
Interrupt

Internal
Resets

STOP WAKEUP
Asserts

XRES / Brownout /
Power On Reset

Firmware
Action

RESET

Internal Reset Event

External Reset Event

Firmware Action

Other External Event

Power Mode Action

KEY:

SLEEP

88 PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

Power Modes

Table 11-1 illustrates the power modes offered by PSoC 4

In addition to the wakeup sources mentioned in Table 11-1,
external reset (XRES) and brownout reset bring the device
to Active mode from any power mode.

11.1 Active Mode
Active mode is the primary power mode of the PSoC device.
This mode provides the option to use every possible subsys-
tem/peripheral in the device. In this mode, the CPU is run-
ning and all the peripherals are powered. The firmware may
be configured to disable specific peripherals that are not in
use, to reduce power consumption.

11.2 Sleep Mode
This is a CPU-centric power mode. In this mode, the Cortex-
M0 CPU enters Sleep mode and its clock is disabled. It is a
mode that the PSoC 4 should come to very often or as soon
as the CPU is idle, to accomplish low power consumption. It
is identical to Active mode from a peripheral point of view.
Any enabled interrupt can cause wakeup from Sleep mode.

11.3 Deep-Sleep Mode
In Deep-Sleep mode, the CPU, SRAM, UDB, and high-
speed logic are in retention. The high-frequency clocks,
including HFCLK and SYSCLK, are disabled. Optionally, the
internal low-frequency (32kHz) oscillator and watch crystal
oscillator (WCO) remain on and low-frequency peripherals
continue to operate. Digital peripherals that do not need a
clock or receive a clock from their external interface (for
example, I2C slave) continue to operate. Interrupts from
low-speed, asynchronous or low-power analog peripherals
can cause a wakeup from Deep-Sleep mode. CTBm can
also operate in this mode with reduced power and band-
width. For details on power consumption and CTBm band-
width, refer to the device datasheet.

The available wakeup sources are listed in Table 11-2.

Table 11-1. PSoC 4 Power Modes

Power
Mode

Description Entry Condition
Wakeup
Sources

Active Clocks
Wakeup
Action

Available Regulators

Active
Primary mode of opera-
tion; all peripherals are
available (programmable).

Wakeup from other
power modes, inter-
nal and external
resets, brownout,
power on reset

Not applicable
All (programma-
ble)

Interrupt

All regulators are available.
The Active digital regulator
can be disabled if external
regulation is used.

Sleep

CPU enters Sleep mode
and SRAM is in retention;
all peripherals are avail-
able (programmable).

Manual register write Any interrupt
All (programma-
ble)

Interrupt

All regulators are available.
The Active digital regulator
can be disabled if external
regulation is used.

Deep-
Sleep

All internal supplies are
driven from the Deep-
Sleep regulator. IMO and
high-speed peripherals are
off. Only the low-frequency
(32 kHz) clock is available.

Interrupts from low-speed,
asynchronous, or low-
power analog peripherals
can cause a wakeup.

Manual register write

GPIO interrupt,
low-power
comparator,
SCB, watch-
dog timer

ILO (32 kHz),
WCO (32 kHz)

Interrupt
Deep-Sleep regulator and
Hibernate regulator

Hibernate

Only SRAM and UDBs are
retained; all internal sup-
plies, except the hibernate
supply are off. Wakeup is
possible from a pin inter-
rupt or a low-power com-
parator.

Manual register write
GPIO interrupt,
low-power
comparator

None

Reset
(with
interrupt
state
retention)

Hibernate regulator

Stop

All internal supplies are off.
Only GPIO states are
retained. Wakeup is possi-
ble from XRES or
WAKEUP pins only.

Manual register write WAKEUP pin None Reset None

http://www.cypress.com/?rID=108039

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B 89

Power Modes

11.4 Hibernate Mode
This is the lowest PSoC 4 power mode that retains SRAM. It
is implemented by switching off all clocks and removing
power from the CPU and all peripherals, with the exception
of a few (asynchronous) peripherals that can wake up the
system from an external event. Note that in this mode, the
CPU and all peripherals lose state.

In this mode, a Hibernate regulator with limited capacity is
used to achieve an extremely low power consumption. This
puts a constraint on the maximum frequency of any signals
present on the input pins while in Hibernate mode. The com-
bined toggle rate on all I/O pins (total frequency of signals in
all inputs and outputs) must not exceed 10 kHz.

Any system that has signals toggling at high rates can use
Deep-Sleep mode without seeing a significant difference in
total power consumption.

Wakeup from Hibernate mode is possible from a pin inter-
rupt or a low-power comparator only. Wakeup from hiber-
nate incurs a reset rather than a wakeup from interrupt.
When waking up from hibernate, the CPU and most periph-
erals are in their reset state and firmware will start at the
reset vector. I/O pins will be tri-stated after reset, unless
they are explicitly frozen by firmware before entry into Hiber-
nate mode. To know the cause of interrupt, use the TOKEN
bits in PWR_STOP register, as described in Low-Power

Mode Entry and Exit on page 90.

External reset (XRES) triggers a full system restart. In this
case, the cause is not readable after the device restarts, and
I/O pins will not retain their “frozen” state.

11.5 Stop Mode
In the Stop mode, the CPU, all internal regulators, and all
peripherals are switched off. Wakeup from Stop mode is a
system reset and it is possible from XRES or WAKEUP pins
only. I/O pins will be tri-stated after reset, unless they are
explicitly frozen by firmware before entry into Stop mode. To
know the cause of interrupt, use the TOKEN bits in
PWR_STOP register, as described in Low-Power Mode
Entry and Exit on page 90.

External reset (XRES) triggers a full system restart. In this
case, the cause is not readable after the device restarts, and
I/O pins will not retain their "frozen" state.

11.6 Power Mode Summary
Table 11-2 illustrates the peripherals available in each low-
power mode; Table 11-2 illustrates the wakeup sources
available in each power mode.

Table 11-2. Wakeup Sources

Power Mode Wakeup Source Wakeup Action

Sleep
Any interrupt source Interrupt

Any reset source Reset

Deep-Sleep

GPIO interrupt Interrupt

Low-power comparator Interrupt

I2C address match Interrupt

Watchdog timer Interrupt / Reset

XRES (external reset pin)a, Brownout Reset

CTBm Interrupt

BLESS Interrupt

Hibernate

GPIO Interrupt Reset

Low-power comparator Reset

XRES (external reset pin)a, Brownout Reset

Stop
WAKEUP pin Reset

XRES (external reset pin)a, Brownout Reset

a. XRES triggers a full system restart. All the states including frozen GPIOs are lost. In this case, the cause of wakeup is not readable after the device restarts.

90 PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

Power Modes

11.7 Low-Power Mode Entry and
Exit

A Wait For Interrupt (WFI) instruction from the Cortex-M0
(CM0) triggers the transitions into Sleep, Deep-Sleep, and
Hibernate mode. The Cortex-M0 can delay the transition into
a low-power mode until the lowest priority ISR is exited (if
the SLEEPONEXIT bit in the CM0 System Control Register
is set).

The transition to Sleep, Deep-Sleep, and Hibernate modes
are controlled by the flags SLEEPDEEP in the CM0 System
Control Register (CM0_SCR) and HIBERNATE in the Sys-
tem Resources Power subsystem (PWR_CONTROL).

■ Sleep is entered when the WFI instruction is executed,
SLEEPDEEP = 0 and HIBERNATE = x.

■ Deep-Sleep is entered when the WFI instruction is exe-
cuted, SLEEPDEEP = 1 and HIBERNATE = 0.

■ Hibernate is entered when the WFI instruction is exe-
cuted, SLEEPDEEP = 1 and HIBERNATE = 1.

The LPM READY bit in the PWR_CONTROL register shows
the status of Deep-Sleep and Hibernate regulators. If the
firmware tries to enter Deep-Sleep or Hibernate mode
before the regulators are ready, then PSoC 4 goes to Sleep
mode first, and when the regulators are ready, the device
enters Deep-Sleep or Hibernate mode. This operation is
automatically done in hardware.

In Sleep and Deep-Sleep modes, a selection of peripherals
are available (see Table 11-2), and firmware can either
enable or disable their associated interrupts. Enabled inter-
rupts can cause wakeup from low-power mode to Active
mode. Additionally, any RESET returns the system to Active
mode. See the Interrupts chapter on page 51 and the Reset
System chapter on page 95 for details.

Use the PWR_STOP register to freeze the GPIO states in
these low-power modes. This is recommended for the Hiber-
nate and Stop modes because the wakeup from these
modes causes a system reset.

Stop mode is entered directly using the PWR_STOP register
in the System Resources Power subsystem. It removes
power from all of the low-voltage logic in the system. Only
the I/O state and PWR_STOP register contents are retained
and wakeup (reset) happens on either XRES or toggling of a

fixed WAKEUP pin.

The fields in PWR_STOP register are:

■ TOKEN – This field contains an 8-bit token that is
retained through a STOP/WAKEUP sequence that can
be used by firmware to differentiate WAKEUP from a
general RESET event. Note that waking up from STOP
using XRES resets this register.

■ UNLOCK – This field must be written to 0x3A to unlock
the Stop mode. The hardware ignores the STOP bit if
this field has any other setting.

■ POLARITY – This bit sets the polarity of WAKEUP pin
input. The device wakes up when the WAKEUP pin input
matches the value of POLARITY bit.

■ FREEZE – Setting this bit freezes the configuration,
mode, and state of all GPIOs in the system

■ STOP –This bit must be set to enter the Stop mode.

The recommended procedure to enter Stop mode is:

1. Write TOKEN = <any application-specified value>

2. Write UNLOCK = 0x3A

3. Write POLARITY = <application-specified polarity>

4. Write FREEZE = 1

5. Write STOP = 1

It is recommended to add two NOP cycles after the third
write. Stop mode exits when either the XRES or WAKEUP
pins are toggled. Both events clear the STOP bit in the
PWR_STOP register and trigger a POR. A wakeup event
does not clear the other bits of the PWR_STOP register, but
an XRES event clears all the bits.

The recommended firmware procedure on wakeup from
Stop or Hibernate mode is as follows:

1. Optionally read TOKEN for application-specific branch-
ing.

2. Optionally write I/O drive modes and output data regis-
ters to the required settings. A typical procedure for digi-
tal output ports is to set the pin description as output,
read its frozen value, and set that value in the output
data register.

3. Unfreeze the I/O.

11.8 Register List

Table 11-3. Power Mode Register List

Register Name Description

CM0_SCR System Control - Sets or returns system control data.

PWR_CONTROL Power Mode Control - Controls the device power mode options and allows observation of current state.

PWR_STOP Power Stop - Controls entry/exit from the Stop power mode.

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B 91

12. Watchdog Timer

The watchdog timer (WDT) is used to automatically reset the device in the event of an unexpected firmware execution path.
The WDT runs from the LFCLK, generated by the ILO or WCO. The timer, if enabled, must be serviced periodically in firm-
ware to avoid a reset. Otherwise, the timer will elapse and generate a device reset. The WDT can be used as an interrupt
source or a wakeup source in low-power modes.

12.1 Features

The WDT has these features:

■ System reset generation after a configurable interval

■ Periodic interrupt/wake up generation in Active, Sleep, and Deep-Sleep power modes

■ Supports two 16-bit and one 32-bit independent counters, which can be cascaded to increase the interval

12.2 Block Diagram

Figure 12-1. Watchdog Timer Block Diagram

Watchdog
Timer

CLK

AHB
Interface
Register

CFG/
STATUS

CPU
Subsystem or

WIC

Reset BlockRESET

INTERRUPT

Low-Frequency
Clock

(LFCLK)

92 PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

Watchdog Timer

Figure 12-2. Watchdog Timer Internal Block Diagram

12.3 How It Works

The WDT asserts an interrupt or a hardware reset to the
device after a programmable interval, unless it is periodically
serviced in firmware. The WDT has two 16-bit counters
(WDT0 and WDT1) and one 32-bit counter (WDT2). These
counters can be configured to work independently or in cas-
cade.WDT0 and WDT1 can be configured to generate an
interrupt on a match event, that is, when the counter value
equals the match value. The WDT0 and WDT1 counters can
also be configured to generate a reset on a match event or
after three successive match events that are not handled
(match event interrupt not cleared).

WDT2 can be configured to generate an interrupt based on
the value stored in the WDT_BITS2[4:0] bits in the
WDT_CONFIG register. WDT2 cannot generate a system
reset or an interrupt with any match value similar to WDT1
or WDT0. WDT2 can generate an interrupt only on a rising
edge on one of the 32 bits present in the counter. The
WDT_BITS2[4:0] bits in the WDT_CONFIG register control
the bit that generates the interrupt. See the WDT_CONFIG
register in the PSoC 4100M/4200M Family: PSoC 4 Regis-
ters TRM for details.

WDT_MODEx bits are used to configure the watchdog
counters as described above.

The cascade configuration shown in Figure 12-2 provides
an option to increase the reset or interrupt interval. Note that
cascading two 16-bit counters will not provide a 32-bit coun-
ter; instead, you will obtain a 16-bit period counter with a 16-
bit prescaler. For example, when cascading WDT0 and
WDT1, WDT0 acts as a prescaler for WDT1 and the pres-

caler value will be defined by the WDT_MATCH0[15:0] bits
in the WDT_MATCH register. The WDT1 will have a period
defined by WDT_MATCH1[31:16] bits in the WDT_MATCH
register. The same logic applies to WDT1 and WDT2 cas-
cading.

When the WDT is used to protect against system crashes,
clearing the WDT interrupt bit to reset the watchdog must be
done from a portion of the code that is not directly associ-
ated with the WDT interrupt. Otherwise, even if the main
function of the firmware crashes or is in an endless loop, the
WDT interrupt vector can still be intact and feed the WDT
periodically.

The safest way to use the WDT against system crashes is
to:

■ Configure the watchdog reset period such that firmware
is able to reset the watchdog at least once during the
period, even along the longest firmware delay path.

■ Reset the watchdog by clearing the interrupt bit regularly
in the main body of the firmware code. If configured to
generate a reset on a match event, reset the watchdog
by clearing the WDTx counter. The WDTx counter can
be cleared by setting the WDT_RESETx bit in the
WDT_CONFIG register. For details, refer to the
WDT_CONFIG register in the PSoC 4100M/4200M
Family: PSoC 4 Registers TRM.

■ It is not recommended to reset watchdog in the WDT
interrupt service routine (ISR), if WDT is being used as a
reset source to protect the system against crashes.
Hence, it is not recommended to use the same watch-
dog counter for generating system reset and interrupt.
For example, if WDT0 is used for generating system

LFCLK

WDT0 (16-bit Counter)
WDT_CTR0

WDT1 (16-bit Counter)
WDT_CTR1

WDT2 (32-bit Counter)
WDT_CTRHIGH

WDT_CTR0 ==
WDT_MATCH0

WDT_CTR1 ==
WDT_MATCH1

321616

WDT
Mode

Configuration
WDT_MODE0

2
WDT_MODE1

2

WDT
Mode

Configuration
WDT_MODE2

1

5
WDT_BITS2

WDT_CASCADE0_1 WDT_CASCADE1_2

WDT_INT1WDT_INT0 WDT_INT2RESET RESET

INTERRUPT

RESET

WDT
Mode

Configuration

Watchdog
Timer

http://www.cypress.com/?rid=111232
http://www.cypress.com/?rid=111232
http://www.cypress.com/?rid=111232
http://www.cypress.com/?rid=111232

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B 93

Watchdog Timer

reset against crashes, then WDT1 or WDT2 should be
used for periodic interrupt generations.

Follow these steps to use WDT as a periodic interrupt gen-
erator:

1. Set the WDT_CLEAR0 or WDT_CLEAR1 bit in the
WDT_CONFIG register for WDT0 or WDT1 to reset the
corresponding watchdog counter to ‘0’ on a match event.

2. Write the desired match value to the WDT_MATCH reg-
ister for WDT0/WDT1 and the WDT_BITS2 value to the
WDT_CONFIG register for WDT2.

3. Clear the WDT_INTx bit in WDT_CONTROL to clear any
pending interrupt.

4. Enable the WDT interrupt by configuring the
WDT_MODEx bits in WDT_CONFIG. Configure the
WDT_MODE0 or WDT_MODE1 bits in WDT_CONFIG
for WDT0 or WDT1 to ‘1’ (interrupt on match) or ‘3’
(interrupt on match and reset on third unhandled match).
For WDT2, set the WDT_MODE2 bit in the
WDT_CONFIG register.

5. Enable global WDT interrupt in the CM0_ISER register
(See the Interrupts chapter on page 51 for details).

6. In the ISR, clear the WDT interrupt.

For more details on interrupts, see the Interrupts chapter on
page 51.

Changing WDT_MATCH requires three LFCLK cycles to
come into effect. After changing WDT_MATCH, do not enter
the Deep-Sleep mode for one LFCLK cycle to ensure the
WDT updates to the new setting.

12.3.1 Enabling and Disabling WDT

The WDT counters are enabled by setting the
WDT_ENABLEx bit in the WDT_CONTROL register and are

disabled by clearing it. Enabling or disabling a WDT requires
three LFCLK cycles to come into effect. Therefore, the
WDT_ENABLEx bit value must not be changed more than
once in that period.

After WDT is enabled, it is not recommended to write to the
WDT configuration (WDT_CONFIG) and control the
(WDT_CONTROL) registers. Accidental corruption of WDT
registers can be prevented by setting the
WDT_LOCK[15:14] bits of the CLK_SELECT register. If the
application requires updating the match value
(WDT_MATCH) when the WDT is running, the WDT_LOCK
bits must be cleared. The WDT_LOCK bits require two dif-
ferent writes to clear both the bits. Writing a '1' to the bits
clears bit 0. Writing a '2' clears bit 1. Writing a '3' sets both
the bits and writing '0' does not have any effect. For details,
refer to the CLK_SELECT register in the PSoC 4100M/
4200M Family: PSoC 4 Registers TRM.

12.3.2 WDT Operating Modes

The WDT0 and WDT1 can be used to generate a reset to
stop the system from going into the unresponsive state or to
generate an interrupt to wake up the system from Sleep or
Deep-Sleep power modes. The bit field WDT_MODEx[1:0]
in the WDT_CONFIG register can be configured to select
the required action when the count value stored in the
WDT_CTRx register bits equals the match values
(WDT_MATCHx) stored in the WDT_MATCH register. See
the WDT_CTRHIGH, WDT_CTRLOW, and WDT_MATCH
registers in the PSoC 4100M/4200M Family: PSoC 4 Regis-
ters TRM for details.

The WDT2 can be used to generate interrupts based on the status of the WDT_BITS2[4:0] register bits.

Note: When the watchdog counters are configured to generate an interrupt every LFCLK cycle, make sure you read the
WDT_CONTROL register after clearing the watchdog interrupt (setting the WDT_INTx bit in the WDT_CONTROL register).
Failure to do this may result in missing the next interrupt; it will also result in an interrupt cycle of LFCLK/2.

Table 12-1. WDT0 and WDT1 Modes

Bit-field Name Description

WDT_MODE0[1:0]

or

WDT_MODE1[1:0]

Watchdog Counter Action on Match (WDT_CTR0=WDT_MATCH0) or (WDT_CTR1=WDT_MATCH1):

00: Do nothing

01: Assert WDT_INT0 or WDT_INT1

10: Assert WDT Reset

11: Assert WDT_INT0 or WDT_INT1, assert WDT reset after the third unhandled interrupt

Table 12-2. WDT2 Mode

Bit-field Name Description

WDT_MODE2

0: Free-running counter with no interrupt requests

1: Free-running counter with interrupt request on the rising edge of the bit specified by WDT_BITS2 bits in the
WDT_CONFIG register

http://www.cypress.com/?rid=111232
http://www.cypress.com/?rid=111232
http://www.cypress.com/?rid=111232
http://www.cypress.com/?rid=111232

94 PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

Watchdog Timer

12.3.3 WDT Interrupts and Low-Power
Modes

The watchdog counter can send interrupt requests to the
CPU in Active power mode and to the WakeUp Interrupt
Controller (WIC) in Sleep and Deep-Sleep power modes. It
works as follows:

■ Active Mode: In Active power mode, the WDT can send
the interrupt to the CPU. The CPU acknowledges the
interrupt request and executes the ISR. The interrupt
must be cleared after entering the ISR in firmware.

■ Sleep or Deep-Sleep Mode: In this mode, the CPU sub-
system is powered down. Therefore, the interrupt
request from the WDT is directly sent to the WIC, which
will then wake up the CPU. The CPU acknowledges the

interrupt request and executes the ISR. The interrupt
must be cleared after entering the ISR in firmware.

For more details on device power modes, see the Power
Modes chapter on page 87.

12.3.4 WDT Reset Mode

The RESET_WDT bit in the RES_CAUSE register indicates
the reset generated by the WDT. This bit remains set until
cleared or until a power-on reset (POR), brownout reset
(BOD), or external reset (XRES) occurs. All other resets
leave this bit untouched.

For more details, see the Reset System chapter on page 95.

12.4 Register List

Table 12-3. WDT Registers

Register Name Description

WDT_CTRLOW Watchdog counters 0 and 1

WDT_CTRHIGH Watchdog counter 2

WDT_MATCH Match value for watchdog counters 0 and 1

WDT_CONFIG Contains WDT configuration bits

WDT_CONTROL Controls the behavior of WDT counters

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B 95

13. Reset System

PSoC® 4 supports several types of resets that guarantee error-free operation during power up and allow the device to reset
based on user-supplied external hardware or internal software reset signals. PSoC 4 also contains hardware to enable the
detection of certain resets.

The reset system has these sources:

■ Power-on reset (POR) to hold the device in reset while the power supply ramps up

■ Brownout reset (BOD) to reset the device if the power supply falls below specifications during operation

■ Watchdog reset (WRES) to reset the device if firmware execution fails to service the watchdog timer

■ Software initiated reset (SRES) to reset the device on demand using firmware

■ External reset (XRES) to reset the device using an electrical signal external to the PSoC 4

■ Protection fault reset (PROT_FAULT) to reset the device if unauthorized operating conditions occur

■ Hibernate wakeup reset to bring the device out of the Hibernate low-power mode

■ Stop wakeup reset to bring the device out of the Stop low-power mode

13.1 Reset Sources
The following sections provide a description of the reset sources available in PSoC 4.

13.1.1 Power-on Reset

Power-on reset is provided for system reset at power-up. POR holds the device in reset until the supply voltage, VDDD, is
according to the datasheet specification. The POR activates automatically at power-up.

POR events do not set a reset cause status bit, but can be partially inferred by the absence of any other reset source. If no
other reset event is detected, then the reset is caused by POR, BOD, or XRES.

13.1.2 Brownout Reset

Brownout reset monitors the chip digital voltage supply VCCD and generates a reset if VCCD is below the minimum logic oper-
ating voltage specified in the device datasheet. BOD is available in all power modes except the Stop mode.

BOD events do not set a reset cause status bit, but in some cases they can be detected. In some BOD events, VCCD will fall
below the minimum logic operating voltage, but remain above the minimum logic retention voltage. Thus, some BOD events
may be distinguished from POR events by checking for logic retention. This is explained further in Identifying Reset Sources
on page 96.

13.1.3 Watchdog Reset

Watchdog reset (WRES) detects errant code by causing a reset if the watchdog timer is not cleared within the user-specified
time limit. This feature is enabled by setting the WDT_ENABLEx bit in the WDT_CONTROL register.

The RESET_WDT status bit of the RES_CAUSE register is set when a watchdog reset occurs. This bit remains set until
cleared or until a POR, XRES, or undetectable BOD reset; for example, in the case of a device power cycle. All other resets
leave this bit untouched.

For more details, see the Watchdog Timer chapter on page 91.

96 PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

Reset System

13.1.4 Software Initiated Reset

Software initiated reset (SRES) is a mechanism that allows
a software-driven reset. The Cortex-M0 application interrupt
and reset control register (CM0_AIRCR) forces a device
reset when a ‘1’ is written into the SYSRESETREQ bit.
CM0_AIRCR requires a value of A05F written to the top two
bytes for writes. Therefore, write A05F0004 for the reset.

The RESET_SOFT status bit of the RES_CAUSE register is
set when a software reset occurs. This bit remains set until
cleared or until a POR, XRES or undetectable BOD reset;
for example, in the case of a device power cycle. All other
resets leave this bit untouched.

13.1.5 External Reset

External reset (XRES) is a user-supplied reset that causes
immediate system reset when asserted. The XRES pin is
active low – a high voltage on the pin has no effect and a
low voltage causes a reset. The pin is pulled high inside the
device. XRES is available as a dedicated pin in most of the
devices. For detailed pinout, refer to the pinout section of the
device datasheet.

The XRES pin holds the device in reset while held active.
When the pin is released, the device goes through a normal
boot sequence. The logical thresholds for XRES and other
electrical characteristics, are listed in the Electrical Specifi-
cations section of the device datasheet.

XRES events do not set a reset cause status bit, but can be
partially inferred by the absence of any other reset source. If
no other reset event is detected, then the reset is caused by
POR, undetectable BOD, or XRES.

13.1.6 Protection Fault Reset

Protection fault reset (PROT_FAULT) detects unauthorized
protection violations and causes a device reset if they occur.
One example of a protection fault is if a debug breakpoint is
reached while executing privileged code. For details about
privilege code, see Privileged on page 85.

The RESET_PROT_FAULT bit of the RES_CAUSE register
is set when a protection fault occurs. This bit remains set
until cleared or until a POR, XRES or undetectable BOD
reset; for example, in the case of a device power cycle. All
other resets leave this bit untouched.

13.1.7 Hibernate Wakeup Reset

Hibernate wakeup reset detects hibernate wakeup sources
and performs a device reset to return to the Active power
mode. Hibernate wakeup resets are caused by interrupts.

Both pin and comparator interrupts are available in the
Hibernate low-power mode. After a hibernate wakeup reset,
both SRAM and UDB register contents are retained, but
code execution begins after reset as it does after any other
reset source occurs.

Hibernate resets can be detected by checking the interrupt
registers for comparators and pins. These interrupt register
states will be retained across hibernate wakeup resets.

For more details, see Hibernate Mode on page 89.

13.1.8 Stop Wakeup Reset

Stop wakeup reset detects stop wakeup sources and per-
forms a device reset to return to the Active power mode.
Stop wakeup resets are caused by the XRES pin or the
WAKEUP pin. After a stop wakeup reset, no memory con-
tents are retained; code execution begins after reset as it
does after any other reset source occurs.

Some stop wakeup resets can be detected by examining the
TOKEN bit-field (bits 0:7) in the PWR_STOP register. This
bit-field will be filled with a key when Stop mode is entered.
Its contents will be retained if the device is woken up using
the WAKEUP pin. If the device is woken up with the XRES
pin, the wakeup source cannot be detected. For more
details, see Stop Mode on page 89.

13.2 Identifying Reset Sources
When the device comes out of reset, it is often useful to
know the cause of the most recent or even older resets. This
is achieved in the device primarily through the RES_CAUSE
register. This register has specific status bits allocated for
some of the reset sources. The RES_CAUSE register sup-
ports detection of watchdog reset, software reset, and pro-
tection fault reset. It does not record the occurrences of
POR, BOD, XRES, or the Hibernate and Stop wakeup
resets. The bits are set on the occurrence of the correspond-
ing reset and remain set after the reset, until cleared or a
loss of retention, such as a POR reset, external reset or
brownout below the logic retention voltage.

Hibernate wakeup resets can be detected by examining the
comparator and pin interrupt registers that were configured
to wake the device from Hibernate mode. Stop wakeup
resets that occur as a result of a WAKEUP pin event can be
detected by examining the PWR_STOP register, as
described previously. Stop wakeup resets that occur as a
result of an XRES cannot be detected. The other reset
sources can be inferred to some extent by the status of
RES_CAUSE shown in Table 13-1.

Table 13-1. Reset Cause Bits to Detect Reset Source

Bits Name Description

0 RESET_WDT A watchdog timer reset has occurred since the last power cycle.

3 RESET_PROT_FAULT A protection violation occurred that requires a RESET.

4 RESET_SOFT Cortex-M0 requested a system reset through its SYSRESETREQ.

http://www.cypress.com/?rID=108039
http://www.cypress.com/?rID=108039

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B 97

Reset System

Brownout events can be subdivided into two categories:
retention resets and non-retention resets. If VCCD dips
below the minimum logic operating voltage, but not below
the minimum logic retention voltage, then a BOD reset
occurs; but retention of registers is maintained. If VCCD dips
below both minimum operating and minimum retention volt-
age, then a BOD reset occurs without retention of registers.
This register retention can be detected using a special regis-
ter, PWR_BOD_KEY. The PWR_BOD_KEY register only
changes value when written by firmware or when a non-

retention reset such as a non-retention BOD, XRES, or POR
event. This register may be initialized by firmware, and then
checked in subsequent executions of startup code to deter-
mine if a retention BOD occurred.

If these methods cannot detect the cause of the reset, then
it can be one of the non-recorded and non-retention resets:
non-retention BOD, POR, XRES, or Stop Wakeup reset.
These resets cannot be distinguished using on-chip
resources.

13.3 Register List

Table 13-2. Reset System Register List

Register Name Description

WDT_CONTROL Watchdog Timer Control Register - This register allows configuration of the device watchdog timer.

CM0_AIRCR
Cortex-M0 Application Interrupt and Reset Control Register - This register allows initiation of software resets,
among other Cortex-M0 functions.

RES_CAUSE Reset Cause Register - This register captures the cause of recent resets.

PWR_STOP This register controls entry/exit from the Stop power mode.

98 PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

Reset System

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B 99

14. Device Security

PSoC® 4 offers a number of options for protecting user designs from unauthorized access or copying. Disabling debug fea-
tures and enabling flash protection provide a high level of security. In PSoC 4200M devices, additional security can be gained
by implementing custom functionality in the universal digital blocks (UDBs) instead of in firmware. It is more difficult to
reverse-engineer a hardware design implemented in the UDBs than it is to reverse-engineer object code.

The debug circuits are enabled by default and can only be disabled in firmware. If disabled, the only way to re-enable them is
to erase the entire device, clear flash protection, and reprogram the device with new firmware that enables debugging. Addi-
tionally, all device interfaces can be permanently disabled for applications concerned about phishing attacks due to a mali-
ciously reprogrammed device or attempts to defeat security by starting and interrupting flash programming sequences.
Permanently disabling interfaces is not recommended for most applications because the designer cannot access the device.
For more information, as well as a discussion on flash row and chip protection, see the CY8C4xxxM Programming Specifica-
tions.

Note Because all programming, debug, and test interfaces are disabled when maximum device security is enabled, PSoC 4
devices with full device security enabled may not be returned for failure analysis.

14.1 Features
The PSoC 4 device security system has the following features:

■ User-selectable levels of protection.

■ In the most secure case provided, the chip can be “locked” such that it cannot be acquired for test/debug and it cannot
enter erase cycles. Interrupting erase cycles is a known way for hackers to leave chips in an undefined state and open to
observation.

■ CPU execution in a privileged mode by use of the non-maskable interrupt (NMI). When in privileged mode, NMI remains
asserted to prevent any inadvertent return from interrupt instructions causing a security leak.

In addition to these, PSoC 4 offers protection for individual flash row data.

14.2 How It Works

14.2.1 Device Security

The CPU operates in normal user mode or in privileged mode, and the device operates in one of four protection modes:
BOOT, OPEN, PROTECTED, and KILL. Each mode provides specific capabilities for the CPU software and debug. You can
change the mode by writing to the CPUSS_PROTECTION register.

■ BOOT mode: The device comes out of reset in BOOT mode. It stays there until its protection state is copied from supervi-
sor flash to the protection control register (CPUSS_PROTECTION). The debug-access port is stalled until this has hap-
pened. BOOT is a transitory mode required to set the part to its configured protection state. During BOOT mode, the CPU
always operates in privileged mode.

■ OPEN mode: This is the factory default. The CPU can operate in user mode or privileged mode. In user mode, flash can
be programmed and debugger features are supported. In privileged mode, access restrictions are enforced.

■ PROTECTED mode: The user may change the mode from OPEN to PROTECTED. This disables all debug access to
user code or memory. Access to most registers is still available; debug access to registers to reprogram flash is not avail-
able. The mode can be set back to OPEN but only after completely erasing the flash.

■ KILL mode: The user may change the mode from OPEN to KILL. This removes all debug access to user code or memory,
and the flash cannot be erased. Access to most registers is still available; debug access to registers to reprogram flash is
not available. The part cannot be taken out of KILL mode; devices in KILL mode may not be returned for failure analysis.

http://www.cypress.com/?rID=111105

100 PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

Device Security

14.2.2 Flash Security

The PSoC 4 devices include a flexible flash-protection sys-
tem that controls access to flash memory. This feature is
designed to secure proprietary code, but it can also be used
to protect against inadvertent writes to the bootloader por-
tion of flash.

Flash memory is organized in rows. You can assign one of
two protection levels to each row; see Table 14-1. Flash pro-
tection levels can only be changed by performing a com-
plete flash erase.

For more details, see the Nonvolatile Memory
Programming chapter on page 299.

Table 14-1. Flash Protection Levels

Protection Setting Allowed Not Allowed

Unprotected
External read and write,
Internal read and write

–

Full Protection External reada

Internal read

a. To protect the PSoC 4 device from external read operations, you should
change the device protection settings to PROTECTED.

External write,
Internal write

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B 101

Section D: Digital System

This section encompasses the following chapters:

■ Serial Communications Block (SCB) chapter on page 103

■ Universal Digital Blocks (UDB) chapter on page 141

■ Controller Area Network (CAN) chapter on page 179

■ Timer, Counter, and PWM chapter on page 195

Top Level Architecture

Digital System Block Diagram

Deep Sleep
Hibernate

Active/Sleep

IO Subsystem

43x GPIO, 14x GPIO_OVT

Peripheral Interconnect (MMIO)PCLK

8x
 T

C
P

W
M

4x
 S

C
B

-I2
C

/S
P

I/
U

A
R

T

Port Interface & Digital System Interconnect (DSI)

Power Modes
2x

 C
A

N
*

Programmable
Digital*

x4

... UDBUDB

W
C

O

High Speed I/O Matrix

* Available only PSoC 4200M

102 PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B 103

15. Serial Communications Block (SCB)

The Serial Communications Block (SCB) of PSoC® 4 supports three serial interface protocols: SPI, UART, and I2C. Only one
of the protocols is supported by an SCB at any given time. PSoC 4 devices have four SCBs. Additional instances of the serial
peripheral interface (SPI) and UART protocols can be implemented using the universal digital blocks (UDBs) in PSoC 4200M.

15.1 Features

This block supports the following features:

■ Standard SPI master and slave functionality with Motorola, Texas Instruments, and National Semiconductor protocols

■ Standard UART functionality with SmartCard reader, Local Interconnect Network (LIN), and IrDA protocols

■ Standard I2C master and slave functionality

■ Standard LIN slave functionality with LIN v1.3 and LIN v2.1/2.2 specification compliance

■ EZ mode for SPI and I2C, which allows for operation without CPU intervention

■ Low-power (Deep-Sleep) mode of operation for SPI and I2C protocols (using external clocking)

Each of the three protocols is explained in the following sections.

15.2 Serial Peripheral Interface (SPI)

The SPI protocol is a synchronous serial interface protocol. Devices operate in either master or slave mode. The master
initiates the data transfer. The SCB supports single-master-multiple-slaves topology for SPI. Multiple slaves are supported
with individual slave select lines.

You can use the SPI master mode when the PSoC has to communicate with one or more SPI slave devices. The SPI slave
mode can be used when the PSoC has to communicate with an SPI master device.

15.2.1 Features

■ Supports master and slave functionality

■ Supports three types of SPI protocols:

❐ Motorola SPI – modes 0, 1, 2, and 3

❐ Texas Instruments SPI, with coinciding and preceding data frame indicator for mode 1

❐ National Semiconductor (MicroWire) SPI for mode 0

■ Supports up to four slave select lines

■ Data frame size programmable from 4 bits to 16 bits

■ Interrupts or polling CPU interface

■ Programmable oversampling

■ Supports EZ mode of operation (Easy SPI Protocol)

❐ EZSPI mode allows for operation without CPU intervention

■ Supports externally clocked slave operation:

❐ In this mode, the slave operates in Active, Sleep, and Deep-Sleep system power modes

104 PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

Serial Communications Block (SCB)

15.2.2 General Description

Figure 15-1 illustrates an example of SPI master with four slaves.

Figure 15-1. SPI Example

A standard SPI interface consists of four signals as follows.

■ SCLK: Serial clock (clock output from the master, input
to the slave).

■ MOSI: Master-out-slave-in (data output from the master,
input to the slave).

■ MISO: Master-in-slave-out (data input to the master, out-
put from the slave).

■ Slave Select (SS): Typically an active low signal (output
from the master, input to the slave).

A simple SPI data transfer involves the following: the master
selects a slave by driving its SS line, then it drives data on
the MOSI line and a clock on the SCLK line. The slave uses
either of the edges of SCLK depending on the configuration
to capture the data on the MOSI line; it also drives data on
the MISO line, which is captured by the master.

By default, the SPI interface supports a data frame size of
eight bits (1 byte). The data frame size can be configured to
any value in the range 4 to 16 bits. The serial data can be
transmitted either most significant bit (MSb) first or least
significant bit (LSB) first.

Three different variants of the SPI protocol are supported by
the SCB:

■ Motorola SPI: This is the original SPI protocol.

■ Texas Instruments SPI: A variation of the original SPI
protocol, in which data frames are identified by a pulse
on the SS line.

■ National Semiconductors SPI: A half duplex variation of
the original SPI protocol.

15.2.3 SPI Modes of Operation

15.2.3.1 Motorola SPI

The original SPI protocol was defined by Motorola. It is a full
duplex protocol. Multiple data transfers may happen with the
SS line held at '0'. As a result, slave devices must keep track
of the progress of data transfers to separate individual data
frames. When not transmitting data, the SS line is held at '1'
and SCLK is typically pulled low.

Modes of Motorola SPI

The Motorola SPI protocol has four different modes based
on how data is driven and captured on the MOSI and MISO
lines. These modes are determined by clock polarity (CPOL)
and clock phase (CPHA).

Clock polarity determines the value of the SCLK line when
not transmitting data. CPOL = '0' indicates that SCLK is '0'
when not transmitting data. CPOL = '1' indicates that SCLK
is '1' when not transmitting data.

SPI
Master

SPI
Slave 1

SPI
Slave 2

SPI
Slave 4

SCLK

MOSI

MISO

Slave Select (SS) 2

Slave Select (SS) 4

SPI
Slave 3

Slave Select (SS) 3

Slave Select (SS) 1

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B 105

Serial Communications Block (SCB)

Clock phase determines when data is driven and captured.
CPHA=0 means sample (capture data) on the leading (first)
clock edge, while CPHA=1 means sample on the trailing
(second) clock edge, regardless of whether that clock edge
is rising or falling. With CPHA=0, the data must be stable for
setup time before the first clock cycle.

■ Mode 0: CPOL is '0', CPHA is '0': Data is driven on a fall-
ing edge of SCLK. Data is captured on a rising edge of
SCLK.

■ Mode 1; CPOL is '0', CPHA is '1': Data is driven on a ris-
ing edge of SCLK. Data is captured on a falling edge of
SCLK.

■ Mode 2: CPOL is '1', CPHA is '0': Data is driven on a ris-
ing edge of SCLK. Data is captured on a falling edge of
SCLK.

■ Mode 3: CPOL is '1', CPHA is '1': Data is driven on a fall-
ing edge of SCLK. Data is captured on a rising edge of
SCLK.

Figure 15-2 illustrates driving and capturing of MOSI/MISO
data as a function of CPOL and CPHA.

Figure 15-2. SPI Motorola, 4 Modes

CPOL = 0 CPHA = 0

SCLK

MISO /
MOSI

SCLK

MISO /
MOSI

SCLK

MISO /
MOSI

SCLK

MISO /
MOSI

LEGEND:
CPOL : Clock Polarity
CPHA : Clock Phase
SCLK : SPI interface clock
MOSI : SPI Master-Out-Slave-In
MISO : SPI Master-In-Slave-Out

MSB LSB

MSB LSB

MSB LSB

MSB LSB

CPOL = 0 CPHA = 1

CPOL = 1 CPHA = 0

CPOL = 1 CPHA = 1

106 PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

Serial Communications Block (SCB)

Figure 15-3 illustrates a single 8-bit data transfer and two successive 8-bit data transfers in mode 0 (CPOL is '0', CPHA is '0').

Figure 15-3. SPI Motorola Data Transfer Example

Configuring SCB for SPI Motorola Mode

To configure the SCB for SPI Motorola mode, set various
register bits in the following order:

1. Select SPI by writing '01' to the MODE (bits [25:24]) of
the SCB_CTRL register.

2. Select SPI Motorola mode by writing '00' to the MODE
(bits [25:24]) of the SCB_SPI_CTRL register.

3. Select the mode of operation in Motorola by writing to
the CPHA and CPOL fields (bits 2 and 3 respectively) of
the SCB_SPI_CTRL register.

4. Follow steps 2 to 4 mentioned in Enabling and Initializing
SPI on page 112.

Note that PSoC Creator does all this automatically with the
help of GUIs. For more information on these registers, see
the PSoC 4100M/4200M Family: PSoC 4 Registers TRM.

15.2.3.2 Texas Instruments SPI

The Texas Instruments' SPI protocol redefines the use of the
SS signal. It uses the signal to indicate the start of a data
transfer, rather than a low active slave select signal, as in
the case of Motorola SPI. As a result, slave devices need
not keep track of the progress of data transfers to separate
individual data frames. The start of a transfer is indicated by
a high active pulse of a single bit transfer period. This pulse
may occur one cycle before the transmission of the first data
bit, or may coincide with the transmission of the first data bit.
The TI SPI protocol supports only mode 1 (CPOL is '0' and

CPHA is '1'): data is driven on a rising edge of SCLK and
data is captured on a falling edge of SCLK.

Figure 15-4 illustrates a single 8-bit data transfer and two
successive 8-bit data transfers. The SELECT pulse
precedes the first data bit. Note how the SELECT pulse of
the second data transfer coincides with the last data bit of
the first data transfer.

SCLK

Slave Select

MOSI

MISO

LEGEND:
CPOL : Clock Polarity
CPHA : Clock Phase
SCLK : SPI interface clock
MOSI : SPI Master-Out-Slave-In
MISO : SPI Master-In-Slave-Out

SCLK

Slave Select

MOSI

MISO

CPOL = 0, CPHA = 0 single data transfer

MSB LSB

MSB LSB MSB LSB

LSBMSB

MSB LSB MSB LSB

 CPOL = 0, CPHA = 0 two successive data transfers

http://www.cypress.com/?rid=111232

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B 107

Serial Communications Block (SCB)

Figure 15-4. SPI TI Data Transfer Example

Figure 15-5 illustrates a single 8-bit data transfer and two successive 8-bit data transfers. The SELECT pulse coincides with
the first data bit of a frame.

Figure 15-5. SPI TI Data Transfer Example

SCLK

Slave Select

MOSI

MISO

SCLK

Slave Select

MOSI

MISO

CPOL=0, CPHA=1 single data transfer

MSB LSB

MSB LSB MSB LSB

MSB LSB

MSB LSB MSB LSB

 CPOL=0, CPHA=1 two successive data transfers

LEGEND:
CPOL : Clock Polarity
CPHA : Clock Phase
SCLK : SPI interface clock
MOSI : SPI Master-Out-Slave-In
MISO : SPI Master-In-Slave-Out

SCLK

Slave Select

MOSI

MISO

LEGEND:
CPOL : Clock Polarity
CPHA : Clock Phase
SCLK : SPI interface clock
MOSI : SPI Master-Out-Slave-In
MISO : SPI Master-In-Slave-Out

SCLK

Slave Select

MOSI

MISO

CPOL=0, CPHA=1 single data transfer

MSB LSB

MSB LSB MSB LSB

MSB LSB

MSB LSB MSB LSB

CPOL=0, CPHA=1 two successive data transfers

108 PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

Serial Communications Block (SCB)

Configuring SCB for SPI TI Mode

To configure the SCB for SPI TI mode, set various register
bits in the following order:

1. Select SPI by writing '01' to the MODE (bits [25:24]) of
the SCB_CTRL register.

2. Select SPI TI mode by writing '01' to the MODE (bits
[25:24]) of the SCB_SPI_CTRL register.

3. Select the mode of operation in TI by writing to the
SELECT_PRECEDE field (bit 1) of the SCB_SPI_CTRL
register ('1' configures the SELECT pulse to precede the
first bit of next frame and '0' otherwise).

4. Follow steps 2 to 5 mentioned in Enabling and Initializing
SPI on page 112.

Note that PSoC Creator does all this automatically with the
help of GUIs. For more information on these registers, see
the PSoC 4100M/4200M Family: PSoC 4 Registers TRM.

15.2.3.3 National Semiconductors SPI

The National Semiconductors' SPI protocol is a half duplex
protocol. Rather than transmission and reception occurring
at the same time, they take turns. The transmission and
reception data sizes may differ. A single "idle" bit transfer
period separates transmission from reception. However, the
successive data transfers are NOT separated by an "idle" bit
transfer period.

The National Semiconductors SPI protocol only supports
mode 0: data is driven on a falling edge of SCLK and data is
captured on a rising edge of SCLK.

Figure 15-6 illustrates a single data transfer and two
successive data transfers. In both cases the transmission
data transfer size is eight bits and the reception data transfer
size is four bits.

Figure 15-6. SPI NS Data Transfer Example

MSB LSB

MSB LSB

MSB LSB

MSB LSB

MSB

“idle” ‘0’ cycle

“idle” ‘0’ cycle
No “idle” cycle

SCLK

Slave Select

MOSI

MISO

SCLK

Slave Select

MOSI

MISO

CPOL=0, CPHA=0 Transfer of one MOSI and one MISO data frame

CPOL=0, CPHA=0 Successive transfer of two MOSI and one MISO data frame

LEGEND:
CPOL : Clock Polarity
CPHA : Clock Phase
SCLK : SPI interface clock
MOSI : SPI Master-Out-Slave-In
MISO : SPI Master-In-Slave-Out

http://www.cypress.com/?rid=111232

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B 109

Serial Communications Block (SCB)

Configuring SCB for SPI NS Mode

To configure the SCB for SPI NS mode, set various register
bits in the following order:

1. Select SPI by writing '01' to the MODE (bits [25:24]) of
the SCB_CTRL register.

2. Select SPI NS mode by writing '10' to the MODE (bits
[25:24]) of the SCB_SPI_CTRL register.

3. Follow steps 2 to 5 mentioned in Enabling and Initializing
SPI on page 112.

Note that PSoC Creator does all this automatically with the
help of Component customizers. For more information on
these registers, see the PSoC 4100M/4200M Family: PSoC
4 Registers TRM.

15.2.4 Using SPI Master to Clock Slave

In a normal SPI Master mode transmission, the SCLK is
generated only when the SCB is enabled and data is being
transmitted. This can be changed to always generate a
clock on the SCLK line as long as the SCB is enabled. This
is used when the slave uses the SCLK for functional
operations other than just the SPI functionality. To enable
this, write '1' to the SCLK_CONTINUOUS (bit 5) of the
SCB_SPI_CTRL register.

15.2.5 Easy SPI Protocol

The easy SPI (EZSPI) protocol is based on the Motorola SPI
operating in any mode (0, 1, 2, 3). It allows communication
between master and slave without the need for CPU
intervention at the level of individual frames.

The EZSPI protocol defines an 8-bit EZ address that
indexes a memory array (32-entry array of eight bit per entry
is supported) located on the slave device. To address these
32 locations, the lower five bits of the EZ address are used.
All EZSPI data transfers have 8-bit data frames.

Note The SCB has a FIFO memory, which is a 16 word by
16-bit SRAM, with byte write enable. The access methods
for EZ and non-EZ functions are different. In non-EZ mode,
the FIFO is split into TXFIFO and RXFIFO. Each has eight
entries of 16 bits per entry. The 16-bit width per entry is used
to accommodate configurable data width. In EZ mode, it is
used as a single 32x8 bit EZFIFO because only a fixed 8-bit
width data is used in EZ mode.

EZSPI has three types of transfers: a write of the EZ
address from the master to the slave, a write of data from
the master to an addressed slave memory location, and a
read by the master from an addressed slave memory
location.

15.2.5.1 EZ Address Write

A write of the EZ address starts with a command byte (0x00)
on the MOSI line indicating the master's intent to write the
EZ address. The slave then drives a reply byte on the MISO

line to indicate that the command is observed (0xFE) or not
(0xFF). The second byte on the MOSI line is the EZ
address.

15.2.5.2 Memory Array Write

A write to a memory array index starts with a command byte
(0x01) on the MOSI line indicating the master's intent to
write to the memory array. The slave then drives a reply byte
on the MISO line to indicate that the command was
registered (0xFE) or not (0xFF). Any additional write data
bytes on the MOSI line are written to the memory array at
locations indicated by the communicated EZ address. The
EZ address is automatically incremented by the slave as
bytes are written into the memory array. When the EZ
address exceeds the maximum number of memory entries
(32), it remains there and does not wrap around to 0.

15.2.5.3 Memory Array Read

A read from a memory array index starts with a command
byte (0x02) on the MOSI line indicating the master's intent to
read from the memory array. The slave then drives a reply
byte on the MISO line to indicate that the command was
registered (0xFE) or not (0xFF). Any additional read data
bytes on the MISO line are read from the memory array at
locations indicated by the communicated EZ address. The
EZ address is automatically incremented by the slave as
bytes are read from the memory array. When the EZ
address exceeds the maximum number of memory entries
(32), it remains there and does not wrap around to 0.

Figure 15-7 illustrates the write of EZ address, write to a
memory array and read from a memory array operations in
the EZSPI protocol.

http://www.cypress.com/?rid=111232
http://www.cypress.com/?rid=111232

110 PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

Serial Communications Block (SCB)

Figure 15-7. EZSPI Example

15.2.5.4 Configuring SCB for EZSPI Mode

By default, the SCB is configured for non-EZ mode of
operation. To configure the SCB for EZSPI mode, set the
register bits in the following order:

1. Select EZ mode by writing '1' to the EZ_MODE bit (bit
10) of the SCB_CTRL register.

2. Use continuous transmission mode for the transmitter by
writing '1' to the CONTINUOUS bit of SCB_SPI_CTRL
register.

3. Follow steps 2 to 5 mentioned in Enabling and Initializing
SPI on page 112.

Note that PSoC Creator does all this automatically with the
help of Component customizers. For more information on
these registers, see the PSoC 4100M/4200M Family: PSoC
4 Registers TRM.

Command 0x00 EZ Address

Command 0x00 : Write EZ address

Command 0x01

Command 0x01 : Write DATA

Write DATA

Command 0x02

Command 0x02 : Read DATA

Read DATA

SCLK

Slave Select

MOSI

MISO

SCLK

Slave Select

MOSI

MISO

SCLK

Slave Select

MOSI

MISO

EZ address

EZ address (8 bits)

EZ buffer
(32 bytes SRAM)

EZ address

Write
DATA

Read
DATA

LEGEND :
CPOL : Clock Polarity 0x00 : Write EZ address
CPHA : Clock Phase 0x01 : Write DATA
SCLK : SPI Interface Clock 0x02 : Read DATA
MISO : SPI Master-In-Slave-Out 0xFE : “slave ready”
MOSI : SPI Master-Out-Slave-In 0xFF : “slave busy”

http://www.cypress.com/?rid=111232
http://www.cypress.com/?rid=111232

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B 111

Serial Communications Block (SCB)

15.2.6 SPI Registers

The SPI interface is controlled using a set of 32-bit control and status registers listed in Table 15-1. For more information on
these registers, see the PSoC 4100M/4200M Family: PSoC 4 Registers TRM.

15.2.7 SPI Interrupts

The SPI supports both internal and external interrupt
requests. The internal interrupt events are listed here. PSoC
Creator generates the necessary interrupt service routines
(ISRs) for handling buffer management interrupts. Custom
ISRs can also be used by connecting external interrupt
component to the interrupt output of the SPI component
(with external interrupts enabled).

The SPI predefined interrupts can be classified as TX
interrupts and RX interrupts. The TX interrupt output is the
logical OR of the group of all possible TX interrupt sources.
This signal goes high when any of the enabled TX interrupt
sources are true. The RX interrupt output is the logical OR
of the group of all possible RX interrupt sources. This signal
goes high when any of the enabled Rx interrupt sources are
true. Various interrupt registers are used to determine the
actual source of the interrupt.

The SPI supports interrupts on the following events:

■ SPI master transfer done

■ SPI Bus Error - Slave deselected at an unexpected time
in the SPI transfer

■ SPI slave deselected after any EZSPI transfer occurred

■ SPI slave deselected after a write EZSPI transfer
occurred

■ TX

❐ TX FIFO has less entries than the value specified by
TRIGGER_LEVEL in SCB_TX_FIFO_CTRL

❐ TX FIFO is not full

❐ TX FIFO is empty

❐ TX FIFO overflow

❐ TX FIFO underflow

■ RX

❐ RX FIFO is full

❐ RX FIFO is not empty

❐ RX FIFO overflow

❐ RX FIFO underflow

■ SPI Externally clocked

Table 15-1. SPI Registers

Register Name Operation

SCB_CTRL
Enables the SCB, selects the type of serial interface (SPI, UART, I2C), and selects internally and externally
clocked operation, EZ and non-EZ modes of operation.

SCB_STATUS In EZ mode, this register indicates whether the externally clocked logic is potentially using the EZ memory.

SCB_SPI_CTRL
Configures the SPI as either a master or a slave, selects SPI protocols (Motorola, TI, National) and clock-
based submodes in Motorola SPI (modes 0,1,2,3), selects the type of SELECT signal in TI SPI.

SCB_SPI_STATUS Indicates whether the SPI bus is busy and sets the SPI slave EZ address in the internally clocked mode.

SCB_TX_CTRL Specifies the data frame width and specifies whether MSB or LSB is the first bit in transmission.

SCB_RX_CTRL
Performs the same function as that of the SCB_TX_CTRL register, but for the receiver. Also decides
whether a median filter is to be used on the input interface lines.

SCB_TX_FIFO_CTRL
Specifies the trigger level, clears the transmitter FIFO and shift registers, and performs the FREEZE opera-
tion of the transmitter FIFO.

SCB_RX_FIFO_CTRL Performs the same function as that of the SCB_TX_FIFO_CTRL register, but for the receiver.

SCB_TX_FIFO_WR Holds the data frame written into the transmitter FIFO. Behavior is similar to that of a PUSH operation.

SCB_RX_FIFO_RD
Holds the data frame read from the receiver FIFO. Reading a data frame removes the data frame from the
FIFO - behavior is similar to that of a POP operation. This register has a side effect when read by software:
a data frame is removed from the FIFO.

SCB_RX_FIFO_RD_SILENT
Holds the data frame read from the receiver FIFO. Reading a data frame does not remove the data frame
from the FIFO; behavior is similar to that of a PEEK operation.

SCB_RX_MATCH Holds the slave device address and mask values.

SCB_TX_FIFO_STATUS
Indicates the number of bytes stored in the transmitter FIFO, the location from which a data frame is read by
the hardware (read pointer), the location from which a new data frame is written (write pointer), and decides
if the transmitter FIFO holds the valid data.

SCB_RX_FIFO_STATUS Performs the same function as that of the SCB_TX_FIFO_STATUS register, but for the receiver.

SCB_EZ_DATA Holds the data in EZ memory location

http://www.cypress.com/?rid=111232

112 PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

Serial Communications Block (SCB)

❐ Wake up request on slave select

❐ SPI STOP detection at the end of each transfer

❐ SPI STOP detection at the end of a write transfer

❐ SPI STOP detection at the end of a read transfer

Note The SPI interrupt signal is hard-wired to the Cortex-
M0 NVIC and cannot be routed to external pins.

15.2.8 Enabling and Initializing SPI

The SPI must be programmed in the following order:

1. Program protocol specific information using the
SCB_SPI_CTRL register, according to Table 15-3. This
includes selecting the submodes of the protocol and
selecting master-slave functionality. EZSPI can be used
with slave mode only.

2. Program the generic transmitter and receiver information
using the SCB_TX_CTRL and SCB_RX_CTRL regis-
ters, as shown in Table 15-4:

a. Specify the data frame width. This should always be
8 for EZSPI.

b. Specify whether MSB or LSB is the first bit to be
transmitted/received. This should always be MSB
first for EZSPI.

3. Program the transmitter and receiver FIFOs using the
SCB_TX_FIFO_CTRL and SCB_RX_FIFO_CTRL regis-
ters respectively, as shown in Table 15-5:

a. Set the trigger level.

b. Clear the transmitter and receiver FIFO and Shift
registers.

c. Freeze the TX and RX FIFO.

4. Program SCB_CTRL register to enable the SCB block.
Also select the mode of operation. These register bits
are shown in Table 15-2

5. Enable the block (write a '1' to the ENABLED bit of the
SCB_CTRL register). After the block is enabled, control
bits should not be changed. Changes should be made
after disabling the block; for example, to modify the oper-
ation mode (from Motorola mode to TI mode) or to go
from externally clocked to internally clocked operation.
The change takes effect only after the block is re-
enabled. Note that re-enabling the block causes re-ini-
tialization and the associated state is lost (for example,
FIFO content).

Table 15-2. SCB_CTRL Register

Bits Name Value Description

[25:24] MODE

00 I2C mode

01 SPI mode

10 UART mode

11 Reserved

31 ENABLED
0 SCB block disabled

1 SCB block enabled

Table 15-3. SCB_SPI_CTRL Register

Bits Name Value Description

[25:24] MODE

00
SPI Motorola submode. (This
is the only mode supported
for EZSPI.)

01
SPI Texas Instruments sub-
mode.

10
SPI National Semiconductors
submode.

11 Reserved.

31
MASTER_M
ODE

0
Slave mode. (This is the only
mode supported for EZSPI.)

1 Master mode.

Table 15-4. SCB_TX_CTRL/SCB_RX_CTRL Registers

Bits Name Description

[3:0]
DATA_
WIDTH

'DATA_WIDTH + 1' is the number of bits
in the transmitted or received data
frame. The valid range is [3, 15]. This
does not include start, stop, and parity
bits. For EZSPI, this value should be
'0b0111'.

8 MSB_FIRST

1= MSB first

0= LSB first

For EZSPI, this value should be 1.

9 MEDIAN

This is for SCB_RX_CTRL only.

Decides whether a digital three-tap
median filter is applied on the input inter-
face lines. This filter should reduce sus-
ceptibility to errors, but it requires higher
oversampling values.

1=Enabled

0=Disabled

Table 15-5. SCB_TX_FIFO_CTRL/SCB_RX_FIFO_CTRL
Registers

Bits Name Description

[7:0]
TRIGGER_LE
VEL

Trigger level. When the transmitter
FIFO has less entries or receiver FIFO
has more entries than the value of this
field, a transmitter or receiver trigger
event is generated in the respective
case.

16 CLEAR
When '1', the transmitter or receiver
FIFO and the shift registers are
cleared.

17 FREEZE

When '1', hardware reads/writes to the
transmitter or receiver FIFO have no
effect. Freeze does not advance the
TX or RX FIFO read/write pointer.

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B 113

Serial Communications Block (SCB)

15.2.9 Internally and Externally Clocked
SPI Operations

The SCB supports both internally and externally clocked
operations for SPI and I2C functions. An internally clocked
operation uses a clock provided by the chip. An externally
clocked operation uses a clock provided by the serial
interface. Externally clocked operation enables operation in
the Deep-Sleep system power mode.

Internally clocked operation uses the high-frequency clock
(HFCLK) of the system. For more information on system
clocking, see the Clocking System chapter on page 61. It
also supports oversampling. Oversampling is implemented
with respect to the high-frequency clock. The OVS (bits
[3:0]) of the SCB_CTRL register specify the oversampling.

In SPI master mode, the valid range for oversampling is 4 to
16. Hence, with a clock speed of 48 MHz, the maximum bit
rate is 12 Mbps. However, if you consider the I/O cell and

routing delays, the oversampling must be set between 6 and
16 for proper operation. So, the maximum bit rate is 8 Mbps.
Note To achieve maximum possible bit rate,
LATE_MISO_SAMPLE must be set to '1' in SPI master
mode. This has a default value of ‘0’.

In SPI slave mode, the OVS field (bits [3:0]) of SCB_CTRL
register is not used. However, there is a frequency
requirement for the SCB clock with respect to the interface
clock (SCLK). This requirement is expressed in terms of the
ratio (SCB clock/SCLK). This ratio is dependent on two
fields: MEDIAN of SCB_RX_CTRL register and
LATE_MISO_SAMPLE of SCB_CTRL register. If the
external SPI master supports Late MISO sampling and if the
median bit is set to ‘0’, the maximum data rate that can be
achieved is 16 Mbps. If the external SPI master does not
support late MISO sampling, the maximum data rate is
limited to 8 Mbps (with the median bit set to ‘0’). Based on
these bits, the maximum bit rates are given in Table 15-6.

Externally clocked operation is limited to:

■ Slave functionality.

■ EZ functionality. EZ functionality uses the block's SRAM
as a memory structure. Non-EZ functionality uses the
block's SRAM as TX and RX FIFOs; FIFO support is not
available in externally clocked operation.

■ Motorola mode 0, 1, 2, 3.

Externally clocked EZ mode of operation can support a data
rate of 48 Mbps (at the interface clock of 48 MHz).

Internally and externally clocked operation is determined by
two register fields of the SCB_CTRL register:

■ EC_AM_MODE: Indicates whether SPI slave selection
is internally ('0') or externally ('1') clocked. SPI slave
selection comprises the first part of the protocol.

■ EC_OP_MODE: Indicates whether the rest of the proto-
col operation (besides SPI slave selection) is internally
('0') or externally ('1') clocked. As mentioned earlier,
externally clocked operation does NOT support non-EZ
functionality.

These two register fields determine the functional behavior
of SPI. The register fields should be set based on the
required behavior in Active, Sleep, and Deep-Sleep system
power mode. Improper setting may result in faulty behavior
in certain system power modes. Table 15-7 and Table 15-8
describes the settings for SPI (in non-EZ and EZ modes).

15.2.9.1 Non-EZ Mode of Operation

In non-EZ mode there are two possible settings. As
externally clocked operation is not supported for non-EZ
functionality (no FIFO support), EC_OP_MODE should
always be set to '0'. However, EC_AM_MODE can be set to
'0' or '1'. Table 15-7 gives an overview of the possibilities.

Table 15-6. SPI Slave Maximum Data Rates

Maximum Bit Rate at Peripheral Clock of 48 MHz Ratio Requirement
Median of

SCB_RX_CTRL
LATE_MISO_SAMPLE of SCB_CTRL

8 Mbps 6 0 1

6 Mbps 8 1 1

4 Mbps 12 0 0

3 Mbps 16 1 0

114 PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

Serial Communications Block (SCB)

EC_OP_MODE is '0' and EC_AM_MODE is '0': This setting
only works in Active and Sleep system power modes. The
entire block's functionality is provided in the internally
clocked domain.

EC_OP_MODE is '0' and EC_AM_MODE is '1': This setting
works in Active and Sleep system power mode and provides
limited (wake up) functionality in Deep-Sleep system power
mode. SPI slave selection is performed by the externally
clocked logic: in Active system power mode, both internally
and externally clocked logic are active, and in Deep-Sleep
system power mode, only the externally clocked logic is
active. When the externally clocked logic detects slave
selection, it sets a wakeup interrupt cause bit, which can be
used to generate an interrupt to wake up the CPU.

■ In Active system power mode, the CPU and the block's
internally clocked operation are active and the wakeup
interrupt cause is disabled (associated MASK bit is '0').
But in the Sleep mode, wakeup interrupt cause can be
either enabled or disabled (MASK bit can be either '1' or
'0') based on the application. The remaining operations
in the Sleep mode are same as that of the Active mode.
The internally clocked operation takes care of the ongo-
ing SPI transfer.

■ In Deep-Sleep system power mode, the CPU needs to
be woken up and the wakeup interrupt cause is enabled
(MASK bit is '1'). Waking up takes time, so the ongoing
SPI transfer is negatively acknowledged ('1' bit or "0xFF"
byte is sent out on the MISO line) and the internally
clocked operation takes care of the next SPI transfer
when it is woken up.

15.2.9.2 EZ Mode of Operation

EZ mode has three possible settings. EC_AM_MODE can
be set to '0' or '1' when EC_OP_MODE is '0' and
EC_AM_MODE must be set to '1' when EC_OP_MODE is
'1'. Table 15-8 gives an overview of the possibilities. The
grey cells indicate a possible, yet not recommended, setting
because it involves a switch from the externally clocked
logic (slave selection) to the internally clocked logic (rest of
the operation). The combination EC_AM_MODE=0 and
EC_OP_MODE=1 is invalid and the block will not respond.

Table 15-7. SPI Operation in Non-EZ Mode

 (non-EZ)

EC_OP_MODE = 0 EC_OP_MODE = 1

System Power Mode EC_AM_MODE = 0 EC_AM_MODE = 1 EC_AM_MODE = 0 EC_AM_MODE = 1

Active and Sleep

Selection using internal
clock.

Operation using internal
clock.

Selection using external
clock:

Operation using internal
clock.

In Active mode, the Wakeup
interrupt cause is disabled
(MASK = 0).

In Sleep mode, the MASK bit
can be configured by the
user.

Not supported Not supported

Deep-Sleep Not supported

Selection using external
clock: Wakeup interrupt
cause is enabled (MASK =
1).

Send 0xFF.

Hibernate
The SCB is not available in these modes (see the Power Modes chapter on page 75)

Stop

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B 115

Serial Communications Block (SCB)

EC_OP_MODE is '0' and EC_AM_MODE is '0': This setting
only works in Active and Sleep system power modes. The
entire block's functionality is provided in the internally
clocked domain.

EC_OP_MODE is '0' and EC_AM_MODE is '1': This setting
works in Active and Sleep system power modes and
provides limited (wake up) functionality in Deep-Sleep
system power mode. SPI slave selection is performed by
the externally clocked logic: in Active system power mode,
both internally and externally clocked logic are active, and in
Deep-Sleep system power mode, only the externally
clocked logic is active. When the externally clocked logic
detects slave selection, it sets a wakeup interrupt cause bit,
which can be used to generate an interrupt to wake up the
CPU.

■ In Active system power mode, the CPU and the block's
internally clocked operation are active and the wakeup
interrupt cause is disabled (associated MASK bit is '0').
But in Sleep mode, wakeup interrupt cause can be either
enabled or disabled (MASK bit can be either '1' or '0')
based on the application. The remaining operations in
the Sleep mode are same as that of the Active mode.
The internally clocked operation takes care of the ongo-
ing SPI transfer.

■ In Deep-Sleep system power mode, the CPU needs to
be woken up and the wakeup interrupt cause is enabled
(MASK bit is '1'). Waking up takes time, so the ongoing
SPI transfer is negatively acknowledged ('1' bit or "0xFF"
byte is sent out on the MISO line) and the internally
clocked operation takes care of the next SPI transfer
when it is woken up.

EC_OP_MODE is '1' and EC_AM_MODE is '1': This setting
works in Active, Sleep, and Deep-Sleep system power
modes. The SCB functionality is provided in the externally
clocked domain. Note that this setting results in externally
clocked accesses to the block's SRAM. These accesses
may conflict with internally clocked accesses from the
device. This may cause wait states or bus errors. The field
FIFO_BLOCK of the SCB_CTRL register determines
whether wait states ('1') or bus errors ('0') are generated.

15.3 UART

The Universal Asynchronous Receiver/Transmitter (UART)
protocol is an asynchronous serial interface protocol. UART
communication is typically point-to-point. The UART
interface consists of two signals:

■ TX: Transmitter output

■ RX: Receiver input

15.3.1 Features

■ Asynchronous transmitter and receiver functionality

■ Supports a maximum data rate of 3 Mbps

■ Supports UART protocol

❐ Standard UART

❐ SmartCard (ISO7816) reader.

❐ IrDA

■ Supports Local Interconnect Network (LIN)

❐ Break detection

Table 15-8. SPI Operation in EZ Mode

SPI, EZ Mode

EC_OP_MODE = 0 EC_OP_MODE = 1

System Power Mode EC_AM_MODE = 0 EC_AM_MODE = 1 EC_AM_MODE = 0 EC_AM_MODE = 1

Active and Sleep

Selection using internal
clock.

Operation using internal
clock.

Selection using external
clock.

Operation using internal
clock.

In Active mode, the Wakeup
interrupt cause is disabled
(MASK = 0).

In Sleep mode, the MASK bit
can be configured by the
user.

Invalid

Selection using external
clock.

Operation using external
clock.

Deep-Sleep Not supported

Selection using external
clock: Wakeup interrupt
cause is enabled (MASK =
1).

Send 0xFF.

Selection using external
clock.

Operation using external
clock.

Hibernate
The SCB is not available in these modes (see the Power Modes chapter on page 75)

Stop

116 PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

Serial Communications Block (SCB)

❐ Baud rate detection

❐ Collision detection (ability to detect that a driven bit
value is not reflected on the bus, indicating that
another component is driving the same bus)

■ Multi-processor mode

■ Data frame size programmable from 4 to 9 bits

■ Programmable number of STOP bits, which can be set in
terms of half bit periods between 1 and 4

■ Parity support (odd and even parity)

■ Interrupt or polling CPU interface

■ Programmable oversampling

15.3.2 General Description

Figure 15-8 illustrates a standard UART TX and RX.

Figure 15-8. UART Example

A typical UART transfer consists of a "Start Bit" followed by
multiple "Data Bits", optionally followed by a "Parity Bit" and
finally completed by one or more "Stop Bits". The Start and
Stop bits indicate the start and end of data transmission. The
Parity bit is sent by the transmitter and is used by the
receiver to detect single bit errors. As the interface does not
have a clock (asynchronous), the transmitter and receiver
use their own clocks; also, they need to agree upon the
period of a bit transfer.

Three different serial interface protocols are supported:

■ Standard UART protocol

❐ Multi-Processor Mode

❐ Local Interconnect Network (LIN)

■ SmartCard, similar to UART, but with a possibility to
send a negative acknowledgement

■ IrDA, modification to the UART with a modulation
scheme

By default, UART supports a data frame width of eight bits.
However, this can be configured to any value in the range of
4 to 9. This does not include start, stop, and parity bits. The

number of stop bits can be in the range of 1 to 4. The parity
bit can be either enabled or disabled. If enabled, the type of
parity can be set to either even parity or odd parity. The
option of using the parity bit is available only in the Standard
UART and SmartCard UART modes. For IrDA UART mode,
the parity bit is automatically disabled. Figure 15-9 depicts
the default configuration of the UART interface of the SCB.

Note UART interface does not support external clocking
operation. Hence, UART operates only in the Active and
Sleep system power modes.

15.3.3 UART Modes of Operation

15.3.3.1 Standard Protocol

A typical UART transfer consists of a start bit followed by
multiple data bits, optionally followed by a parity bit and
finally completed by one or more stop bits. The start bit
value is always '0', the data bits values are dependent on the
data transferred, the parity bit value is set to a value
guaranteeing an even or odd parity over the data bits, and
the stop bit value is '1'. The parity bit is generated by the
transmitter and can be used by the receiver to detect single
bit transmission errors. When not transmitting data, the TX
line is '1' – the same value as the stop bits.

Because the interface does not have a clock, the transmitter
and receiver need to agree upon the period of a bit transfer.
The transmitter and receiver have their own internal clocks.
The receiver clock runs at a higher frequency than the bit
transfer frequency, such that the receiver may oversample
the incoming signal.

The transition of a stop bit to a start bit is represented by a
change from '1' to '0' on the TX line. This transition can be
used by the receiver to synchronize with the transmitter
clock. Synchronization at the start of each data transfer
allows error-free transmission even in the presence of
frequency drift between transmitter and receiver clocks. The
required clock accuracy is dependent on the data transfer
size.

The stop period or the amount of stop bits between
successive data transfers is typically agreed upon between
transmitter and receiver, and is typically in the range of 1 to
3-bit transfer periods.

Figure 15-9 illustrates the UART protocol.

Figure 15-9. UART, Standard Protocol Example

UART UART

TX

RX
TX

RX

DATA DATA DATA DATA DATA DATA DATA PAR DATA DATA DATAIDLE START STOP START

Two successive data transfers (7data bits, 1 parity bit, 2 stop bits)

LEGEND:
TX / RX : Transmit or Receive line

TX / RX

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B 117

Serial Communications Block (SCB)

The receiver oversamples the incoming signal; the value of the sample point in the middle of the bit transfer period (on the
receiver's clock) is used. Figure 15-10 illustrates this.

Figure 15-10. UART, Standard Protocol Example (Single Sample)

Alternatively, three samples around the middle of the bit transfer period (on the receiver's clock) are used for a majority vote
to increase accuracy. Figure 15-11 illustrates this.

Figure 15-11. UART, Standard Protocol (Multiple Samples)

UART Multi-Processor Mode

The UART_MP (multi-processor) mode is defined with single-master-multi-slave topology, as Figure 15-12 shows. This mode
is also known as UART 9-bit protocol because the data field is nine bits wide. UART_MP is part of Standard UART mode.

Figure 15-12. UART MP Mode Bus Connections

DATA DATA DATA DATA DATA DATA DATA PAR DATA DATA DATAIDLE START STOP START

Synchronisation

Sample points

Synchronisation

Sample points

TX clock

RX clock

TX / RX

LEGEND:
TX / RX : Transmit or Receive line

DATA DATA DATA DATA DATA DATA DATA PAR DATA DATA DATAIDLE START STOP START

Synchronisation

Sample points

Synchronisation

Sample points

TX clock

RX clock

TX / RX

LEGEND:
TX / RX : Transmit or Receive line

UART MP
Master

UART MP
Slave 1

UART MP
Slave 2

UART MP
Slave 3

TX

RXTX TXTX

RX

RXRX

Master TX

Master RX

118 PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

Serial Communications Block (SCB)

The main properties of UART_MP mode are:

■ Single master with multiple slave concept (multi-drop network).

■ Each slave is identified by a unique address.

■ Using 9-bit data field, with the ninth bit as address/data flag (MP bit). When set high, it indicates an address byte; when set
low it indicates a data byte. A data frame is illustrated in Figure 15-13.

■ Parity bit is disabled.

Figure 15-13. UART MP Data Frame

The SCB can be used as either master or slave device in UART_MP mode. Both SCB_TX_CTRL and SCB_RX_CTRL
registers should be set to 9-bit data frame size. When the SCB works as UART_MP master device, the firmware changes the
MP flag for every address or data frame. When it works as UART_MP slave device, the MP_MODE field of the
SCB_UART_RX_CTRL register should be set to '1'. The SCB_RX_MATCH register should be set for the slave address and
address mask. The matched address is written in the RX_FIFO when ADDR_ACCEPT field of the SCB_CTRL register is set
to '1'. If received address does not match its own address, then the interface ignores the following data, until next address is
received for compare.

UART Local Interconnect Network (LIN) Mode

The LIN protocol is supported by the SCB as part of the standard UART. LIN is designed with single-master-multi-slave
topology. There is one master node and multiple slave nodes on the LIN bus. The SCB UART supports both LIN master and
slave functionality. The LIN specification defines both physical layer (layer 1) and data link layer (layer 2). Figure 15-14
illustrates the UART_LIN and LIN Transceiver.

Figure 15-14. UART_LIN and LIN Transceiver

LIN protocol defines two tasks:

■ Master task: This task involves sending a header packet
to initiate a LIN transfer.

■ Slave task: This task involves transmitting or receiving a
response.

The master node supports master task and slave task; the
slave node supports only slave task, as shown in
Figure 15-15.

Figure 15-15. LIN Bus Nodes and Tasks

DATA DATA DATA DATA DATA DATA DATA DATAIDLE START STOPMP

DATA Field

UART LIN

LIN Transceiver

UART LIN

LIN Transceiver

LIN Master 1 LIN Slave 1 LIN Slave 2

TX RX TX RX

LIN BUS

UART LIN

LIN Transceiver

TX RX

Master Node

Master Task

Slave Task

Slave Node Slave Node

LIN bus

Slave Task Slave Task

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B 119

Serial Communications Block (SCB)

LIN Frame Structure

LIN is based on the transmission of frames at pre-
determined moments of time. A frame is divided into header
and response fields, as shown in Figure 15-16.

■ The header field consists of:

❐ Break field (at least 13 bit periods with the value '0').

❐ Sync field (a 0x55 byte frame). A sync field can be
used to synchronize the clock of the slave task with
that of the master task.

❐ Identifier field (a frame specifying a specific slave).

■ The response field consists of data and checksum.

Figure 15-16. LIN Frame Structure

In LIN protocol communication, the least significant bit (LSB)
of the data is sent first and the most significant bit (MSB)
last. The start bit is encoded as zero and the stop bit is
encoded as one. The following sections describe all the byte
fields in the LIN frame.

Break Field. Every new frame starts with a break field,
which is always generated by the master. The break filed
has logical zero with a minimum of 13 bit times and followed
by a break delimiter. The break field structure is as shown in
Figure 15-17.

Figure 15-17. LIN Break Field

Sync Field. This is the second field transmitted by the
master in the header field; its value is 0x55. A sync field can
be used to synchronize the clock of the slave task with that
of the master task for automatic baud rate detection.
Figure 15-18 shows the LIN sync field structure.

Figure 15-18. LIN Sync Field

Protected identifier (PID) Field. A protected identifier field
consists of two sub-fields: the frame identifier (bits 0-5) and
the parity (bit 6 and bit 7). The PID field structure is shown in
Figure 15-19.

■ Frame identifier: The frame identifiers are split into three
categories

❐ Values 0 to 59 (0x3B) are used for signal carrying
frames

❐ 60 (0x3C) and 61 (0x3D) are used to carry diagnostic
and configuration data

❐ 62 (0x3E) and 63 (0x3F) are reserved for future pro-
tocol enhancements

■ Parity: Frame identifier bits are used to calculate the par-
ity

Figure 15-19 shows the PID field structure.

Figure 15-19. PID Field

Data. In LIN, every frame can carry a minimum of one byte
and maximum of 8 bytes of data. Here, the LSB of the data
byte is sent first and the MSB of the data byte is sent last.

Checksum. The checksum is the last byte field in the LIN
frame. It is calculated by inverting the 8-bit sum along with
carryover of all data bytes only or the 8-bit sum with the
carryover of all data bytes and the PID field. There are two
types of checksums in LIN frames. They are:

■ Classic checksum: the checksum calculated over all the
data bytes only (used in LIN 1.x slaves).

■ Enhanced checksum: the checksum calculated over all
the data bytes along with the protected identifier (used in
LIN 2.x slaves).

LIN Frame Types

The type of frame refers to the conditions that need to be
valid to transmit the frame. According to the LIN
specification, there are five different types of LIN frames. A
node or cluster does not have to support all frame types.

Unconditional Frame. These frames carry the signals and
their frame identifiers (of 0x00 to 0x3B range). The
subscriber will receive the frames and make it available to
the application; the publisher of the frame will provide the
response to the header.

Event-Triggered Frame. The purpose of an event-
triggered frame is to increase the responsiveness of the LIN
cluster without assigning too much of the bus bandwidth to
polling of multiple slave nodes with seldom occurring
events. Event-triggered frames carry the response of one or
more unconditional frames. The unconditional frames
associated with an event triggered frame should:

120 PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

Serial Communications Block (SCB)

■ Have equal length

■ Use the same checksum model (either classic or
enhanced)

■ Reserve the first data field to its protected identifier

■ Be published by different slave nodes

■ Not be included directly in the same schedule table as
the event-triggered frame

Sporadic Frame. The purpose of the sporadic frames is to
merge some dynamic behavior into the schedule table
without affecting the rest of the schedule table. These
frames have a group of unconditional frames that share the
frame slot. When the sporadic frame is due for transmission,
the unconditional frames are checked if they have any
updated signals. If no signals are updated, no frame will be
transmitted and the frame slot will be empty.

Diagnostic Frames. Diagnostic frames always carry
transport layer, and contains eight data bytes.

The frame identifier for diagnostic frame is:

■ Master request frame (0x3C), or

■ Slave response frame (0x3D)

Before transmitting a master request frame, the master task
queries its diagnostic module to see if it will be transmitted
or if the bus will be silent. A slave response frame header
will be sent unconditionally. The slave tasks publish and
subscribe to the response according to their diagnostic
modules.

Reserved Frames. These frames are reserved for future
use; their frame identifiers are 0x3E and 0x3F.

LIN Go-To-Sleep and Wake-Up

The LIN protocol has the feature of keeping the LIN bus in
Sleep mode, if the master sends the go-to-sleep command.
The go-to-sleep command is a master request frame (ID =
0x3C) with the first byte field is equal to 0x00 and rest set to
0xFF. The slave node application may still be active after the
go-to-sleep command is received. This behavior is
application specific. The LIN slave nodes automatically
enter Sleep mode if the LIN bus inactivity is more than four
seconds.

Wake-up can be initiated by any node connected to the LIN
bus - either LIN master or any of the LIN slaves by forcing
the bus to be dominant for 250 µs to 5 ms. Each slave
should detect the wakeup request and be ready to process
headers within 100 ms. The master should also detect the
wakeup request and start sending headers when the slave
nodes are active.

To support LIN, a dedicated (off-chip) line driver/receiver is
required. Supply voltage range on the LIN bus is 7 V to 18 V.
Typically, LIN line drivers will drive the LIN line with the value
provided on the SCB TX line and present the value on the

LIN line to the SCB RX line. By comparing TX and RX lines
in the SCB, bus collisions can be detected (indicated by the
SCB_UART_ARB_LOST field of the SCB_INTR_TX
register).

Configuring the SCB as Standard UART Interface

To configure the SCB as a standard UART interface, set
various register bits in the following order:

1. Configure the SCB as UART interface by writing '10' to
the MODE field (bits [25:24]) of the SCB_CTRL register.

2. Configure the UART interface to operate as a Standard
protocol by writing '00' to the MODE field (bits [25:24]) of
the SCB_UART_CTRL register.

3. To enable the UART MP Mode or UART LIN Mode, write
'1' to the MP_MODE (bit 10) or LIN_MODE (bit 12)
respectively of the SCB_UART_RX_CTRL register.

4. Follow steps 2 to 5 described in Enabling and Initializing
UART on page 122.

Note that PSoC Creator does all this automatically with the
help of GUIs. For more information on these registers, see
the PSoC 4100M/4200M Family: PSoC 4 Registers TRM.

15.3.3.2 SmartCard (ISO7816)

ISO7816 is asynchronous serial interface, defined with
single-master-single slave topology. ISO7816 defines both
Reader (master) and Card (slave) functionality. For more
information, refer to the ISO7816 Specification. Only master
(reader) function is supported by the SCB. This block
provides the basic physical layer support with asynchronous
character transmission. UART_TX line is connected to
SmartCard IO line, by internally multiplexing between
UART_TX and UART_RX control modules.

The SmartCard transfer is similar to a UART transfer, with
the addition of a negative acknowledgement (NACK) that
may be sent from the receiver to the transmitter. A NACK is
always '0'. Both master and slave may drive the same line,
although never at the same time.

A SmartCard transfer has the transmitter drive the start bit
and data bits (and optionally a parity bit). After these bits, it
enters its stop period by releasing the bus. Releasing results
in the line being '1' (the value of a stop bit). After one bit
transfer period into the stop period, the receiver may drive a
NACK on the line (a value of '0') for one bit transfer period.
This NACK is observed by the transmitter, which reacts by
extending its stop period by one bit transfer period. For this
protocol to work, the stop period should be longer than one
bit transfer period. Note that a data transfer with a NACK
takes one bit transfer period longer, than a data transfer
without a NACK. Typically, implementations use a tristate
driver with a pull-up resistor, such that when the line is not
transmitting data or transmitting the Stop bit, its value is '1'.

Figure 15-20 illustrates the SmartCard protocol.

http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=38770
http://www.cypress.com/?rid=111232

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B 121

Serial Communications Block (SCB)

Figure 15-20. SmartCard Example

The communication Baud rate for ISO7816 is given as:

Baud rate= f7816 × (D/F)

Where f7816 is the clock frequency, F is the clock rate

conversion integer, and D is the baud rate adjustment
integer.

By default, F = 372, D = f1, and the maximum clock
frequency is 5 MHz. Thus, maximum baud rate is
13.4 Kbps. Typically, a 3.57-MHz clock is selected. The
typical value of the baud rate is 9.6 Kbps.

Configuring SCB as UART SmartCard Interface

To configure the SCB as a UART SmartCard interface, set
various register bits in the following order; note that PSoC
Creator does all this automatically with the help of GUIs. For
more information on these registers, see the PSoC 4100M/
4200M Family: PSoC 4 Registers TRM.

1. Configure the SCB as UART interface by writing '10' to
the MODE (bits [25:24]) of the SCB_CTRL register.

2. Configure the UART interface to operate as a Smart-
Card protocol by writing '01' to the MODE (bits [25:24])
of the SCB_UART_CTRL register.

3. Follow steps 2 to 5 described in Enabling and Initializing
UART on page 122.

15.3.3.3 IrDA

The SCB supports the Infrared Data Association (IrDA)
protocol for data rates of up to 115.2 Kbps using the UART
interface. It supports only the basic physical layer of IrDA
protocol with rates less than 115.2 Kbps. Hence, the system
instantiating this block must consider how to implement a
complete IrDA communication system with other available
system resources.

The IrDA protocol adds a modulation scheme to the UART
signaling. At the transmitter, bits are modulated. At the
receiver, bits are demodulated. The modulation scheme
uses a Return-to-Zero-Inverted (RZI) format. A bit value of
'0' is signaled by a short '1' pulse on the line and a bit value
of '1' is signaled by holding the line to '0'. For these data
rates (<=115.2 Kbps), the RZI modulation scheme is used
and the pulse duration is 3/16 of the bit period. The
sampling clock frequency should be set 16 times the
selected baud rate, by configuring the SCB_OVS field of the
SCB_CTRL register.

Different communication speeds under 115.2 Kbps can be
achieved by configuring corresponding block clock
frequency. Additional allowable rates are 2.4 Kbps, 9.6
Kbps, 19.2 Kbps, 38.4 Kbps, and 57.6 Kbps. An IrDA serial
infrared interface operates at 9.6 Kbps. Figure 15-21 shows
how a UART transfer is IrDA modulated.

Figure 15-21. IrDA Example

DATA DATA DATA DATA DATA DATA DATA PAR DATA DATA DATAIDLE START STOP START

Two successive data transfers (7data bits, 1 parity bit, 2 stop bits) without NACK
TX / RX

DATA DATA DATA DATA DATA DATA DATA PAR DATA DATAIDLE START STOP START

Two successive data transfers (7data bits, 1 parity bit, 2 stop bits) with NACK

LEGEND:
TX / RX : Transmit or Receive line

TX / RX

STOPNACK

‘1' ‘0' PARIDLE START STOP START

Two successive data transfers (7data bits, 1 parity bit, 2 stop bits)
TX / RX

‘1'‘1' ‘1' ‘1' ‘1' ‘1'‘0' ‘0' ‘0'

IrDA
TX / RX

LEGEND:
TX / RX : Transmit or Receive line

http://www.cypress.com/?rid=111232
http://www.cypress.com/?rid=111232

122 PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

Serial Communications Block (SCB)

Configuring the SCB as UART IrDA Interface

To configure the SCB as a UART IrDA interface, set various
register bits in the following order; note that PSoC Creator
does all this automatically with the help of GUIs. For more
information on these registers, see the PSoC 4100M/4200M
Family: PSoC 4 Registers TRM.

1. Configure the SCB as UART interface by writing '10' to
the MODE (bits [25:24]) of the SCB_CTRL register.

2. Configure the UART interface to operate as IrDA proto-
col by writing '10' to the MODE (bits [25:24]) of the
SCB_UART_CTRL register.

3. Enable the Median filter on the input interface line by
writing ‘1’ to MEDIAN (bit 9) of the SCB_RX_CTRL reg-
ister.

4. Configure the SCB as described in Enabling and Initializ-
ing UART on page 122.

15.3.4 UART Registers

The UART interface is controlled using a set of 32-bit
registers listed in Table 15-9. For more information on these
registers, see the PSoC 4100M/4200M Family: PSoC 4
Registers TRM.

15.3.5 UART Interrupts

The UART supports both internal and external interrupt
requests. The internal interrupt events are listed in this
section. PSoC Creator generates the necessary interrupt
service routines (ISRs) for handling buffer management
interrupts. Custom ISRs can also be used by connecting the
external interrupt component to the interrupt output of the
UART component (with external interrupts enabled).

The UART predefined interrupts can be classified as TX
interrupts and RX interrupts. The TX interrupt output is the
logical OR of the group of all possible TX interrupt sources.
This signal goes high when any of the enabled TX interrupt
sources is true. The RX interrupt output is the logical OR of
the group of all possible RX interrupt sources. This signal
goes high when any of the enabled Rx interrupt sources is
true. The UART provides interrupts on the following events:

■ TX

❐ TX FIFO has less entries than the value specified by
TRIGGER_LEVEL in SCB_TX_FIFO_CTRL

❐ TX FIFO is not full

❐ TX FIFO is empty

❐ TX FIFO overflow

❐ TX FIFO underflow

❐ TX received a NACK in SmartCard mode

❐ TX done

❐ Arbitration lost (in LIN or SmartCard modes)

■ RX

❐ RX FIFO has less entries than the value specified by
TRIGGER_LEVEL in SCB_RX_FIFO_CTRL

❐ RX FIFO is full

❐ RX FIFO is not empty

❐ RX FIFO overflow

❐ RX FIFO underflow

❐ Frame error in received data frame

❐ Parity error in received data frame

❐ LIN baud rate detection is completed

❐ LIN break detection is successful

15.3.6 Enabling and Initializing UART

The UART must be programmed in the following order:

1. Program protocol specific information using the
SCB_UART_CTRL register, according to Table 15-10.
This includes selecting the submodes of the protocol,
transmitter-receiver functionality, and so on.

Table 15-9. UART Registers

Register Name Operation

SCB_CTRL Enables the SCB; selects the type of serial interface (SPI, UART, I2C)

SCB_UART_CTRL
Used to select the sub-modes of UART (standard UART, SmartCard, IrDA), also used for local loop back
control.

SCB_UART_RX_STATUS
Used to specify the BR_COUNTER value that determines the bit period. This is used to set the accuracy
of the SCB clock. This value provides more granularity than the OVS bit in SCB_CTRL register.

SCB_UART_TX_CTRL
Used to specify the number of stop bits, enable parity, select the type of parity, and enable retransmission
on NACK.

SCB_UART_RX_CTRL
Performs same function as SCB_UART_TX_CTRL but is also used for enabling multi processor mode,
LIN mode drop on parity error, and drop on frame error.

SCB_TX_CTRL Used to specify the data frame width and to specify whether MSB or LSB is the first bit in transmission.

SCB_RX_CTRL
Performs the same function as that of the SCB_TX_CTRL register, but for the receiver. Also decides
whether a median filter is to be used on the input interface lines.

SCB_UART_FLOW_CONTROL Configures flow control for UART transmitter.

http://www.cypress.com/?rid=111232
http://www.cypress.com/?rid=111232
http://www.cypress.com/?rid=111232
http://www.cypress.com/?rid=111232

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B 123

Serial Communications Block (SCB)

2. Program the generic transmitter and receiver information
using the SCB_TX_CTRL and SCB_RX_CTRL regis-
ters, as shown in Table 15-11.

a. Specify the data frame width.

b. Specify whether MSB or LSB is the first bit to be
transmitted or received.

3. Program the transmitter and receiver FIFOs using the
SCB_TX_FIFO_CTRL and SCB_RX_FIFO_CTRL regis-
ters respectively, as shown in Table 15-12.

a. Set the trigger level.

b. Clear the transmitter and receiver FIFO and Shift
registers.

c. Freeze the TX and RX FIFOs.

4. Program the SCB_CTRL register to enable the SCB
block. Also select the mode of operation, as shown in
Table 15-13.

5. Enable the block (write a '1' to the ENABLED bit of the
SCB_CTRL register). After the block is enabled, control
bits should not be changed. Changes should be made
after disabling the block; for example, to modify the oper-
ation mode (from SmartCard to IrDA). The change takes
effect only after the block is re-enabled. Note that re-
enabling the block causes re-initialization and the asso-
ciated state is lost (for example FIFO content).

Table 15-10. SCB_UART_CTRL Register

Bits Name Value Description

[25:24] MODE

00 Standard UART

01 SmartCard

10 IrDA

11 Reserved

16 LOOP_BACK Loop back control. This allows a SCB UART transmitter to communicate with its receiver counterpart.

Table 15-11. SCB_TX_CTRL/SCB_RX_CTRL Registers

Bits Name Description

[3:0] DATA_ WIDTH
'DATA_WIDTH + 1' is the no. of bits in the transmitted or received data frame. The valid range is [3, 15].
This does not include start, stop, and parity bits.

8 MSB_FIRST
1= MSB first

0= LSB first

9 MEDIAN

This is for SCB_RX_CTRL only.

Decides whether a digital three-tap median filter is applied on the input interface lines. This filter should
reduce susceptibility to errors, but it requires higher oversampling values. For the UART IrDA mode, this
should always be '1'.

1=Enabled

0=Disabled

Table 15-12. SCB_TX_FIFO_CTRL/SCB_RX_FIFO_CTRL Registers

Bits Name Description

[7:0] TRIGGER_LEVEL
Trigger level. When the transmitter FIFO has less entries or receiver FIFO has more entries than the
value of this field, a transmitter or receiver trigger event is generated in the respective case.

16 CLEAR When '1', the transmitter or receiver FIFO and the shift registers are cleared/invalidated.

17 FREEZE
When '1', hardware reads/writes to the transmitter or receiver FIFO have no effect. Freeze will not
advance the TX or RX FIFO read/write pointer.

Table 15-13. SCB_CTRL Register

Bits Name Value Description

[25:24] MODE

00 I2C mode

01 SPI mode

10 UART mode

11 Reserved

31 ENABLED
0 SCB block disabled

1 SCB block enabled

124 PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

Serial Communications Block (SCB)

15.4 Inter Integrated Circuit (I2C)

This section explains the I2C implementation in PSoC 4. For
more information on the I2C protocol specification, refer to
the I2C-bus specification available on the NXP website.

15.4.1 Features

This block supports the following features:

■ Master, slave, and master/slave mode

■ Slow-mode (50 kbps), standard-mode (100 kbps), fast-
mode (400 kbps), and fast-mode plus (1000 kbps) data-
rates

■ 7- or 10-bit slave addressing (10-bit addressing requires
firmware support)

■ Clock stretching and collision detection

■ Programmable oversampling of I2C clock signal (SCL)

■ Error reduction using an digital median filter on the input
path of the I2C data signal (SDA)

■ Glitch-free signal transmission with an analog glitch filter

■ Interrupt or polling CPU interface

15.4.2 General Description

Figure 15-22 illustrates an example of an I2C

communication network.

Figure 15-22. I2C Interface Block Diagram

The standard I2C bus is a two wire interface with the
following lines:

■ Serial Data (SDA)

■ Serial Clock (SCL)

I2C devices are connected to these lines using open
collector or open-drain output stages, with pull-up resistors
(Rp). A simple master/slave relationship exists between
devices. Masters and slaves can operate as either
transmitter or receiver. Each slave device connected to the
bus is software addressable by a unique 7-bit address.
PSoC 4 also supports 10-bit address matching for I2C with
firmware support.

15.4.3 Terms and Definitions

Table 15-14 explains the commonly used terms in an I2C
communication network.

15.4.3.1 Clock Stretching

When a slave device is not yet ready to process data, it may
drive a ‘0’ on the SCL line to hold it down. Due to the
implementation of the I/O signal interface, the SCL line
value will be '0', independent of the values that any other
master or slave may be driving on the SCL line. This is
known as clock stretching and is the only situation in which a
slave drives the SCL line. The master device monitors the
SCL line and detects it when it cannot generate a positive
clock pulse ('1') on the SCL line. It then reacts by delaying
the generation of a positive edge on the SCL line, effectively

VDD

RpRp

SCL

SDA

I2C
Master I2C Slave I2C Slave I2C Slave

Table 15-14. Definition of I2C Bus Terminology

Term Description

Transmitter The device that sends data to the bus

Receiver The device that receives data from the bus

Master
The device that initiates a transfer, generates
clock signals, and terminates a transfer

Slave The device addressed by a master

Multi-master
More than one master can attempt to control the
bus at the same time without corrupting the mes-
sage

Arbitration

Procedure to ensure that, if more than one mas-
ter simultaneously tries to control the bus, only
one is allowed to do so and the winning message
is not corrupted

Synchroniza-
tion

Procedure to synchronize the clock signals of two
or more devices

Table 15-14. Definition of I2C Bus Terminology

Term Description

http://www.nxp.com/documents/other/UM10204_v5.pdf

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B 125

Serial Communications Block (SCB)

synchronizing with the slave device that is stretching the
clock.

15.4.3.2 Bus Arbitration

The I2C protocol is a multi-master, multi-slave interface. Bus
arbitration is implemented on master devices by monitoring
the SDA line. Bus collisions are detected when the master
observes an SDA line value that is not the same as the
value it is driving on the SDA line. For example, when
master 1 is driving the value '1' on the SDA line and master
2 is driving the value '0' on the SDA line, the actual line
value will be '0' due to the implementation of the I/O signal
interface. Master 1 detects the inconsistency and loses
control of the bus. Master 2 does not detect any
inconsistency and keeps control of the bus.

15.4.4 I2C Modes of Operation

I2C is a synchronous single master, multi-master, multi-
slave serial interface. Devices operate in either master
mode, slave mode, or master/slave mode. In master/slave
mode, the device switches from master to slave mode when
it is addressed. Only a single master may be active during a
data transfer. The active master is responsible for driving the
clock on the SCL line.

Table 15-15 illustrates the I2C modes of operation.

Data transfer through the I2C bus follows a specific format.
Table 15-16 lists some common bus events that are part of
an I2C data transfer. The Write Transfer and Read Transfer
sections explain the format of bits on an I2C bus during data
transfer.

When operating in multi-master mode, the bus should
always be checked to see if it is busy; another master may
already be communicating with a slave. In this case, the
master must wait until the current operation is complete
before issuing a START signal (see Table 15-16,
Figure 15-23, and Figure 15-24). The master looks for a
STOP signal as an indicator that it can start its data
transmission.

When operating in multi-master-slave mode, if the master
loses arbitration during data transmission, the hardware
reverts to slave mode and the received byte generates a
slave address interrupt, so that the device is ready to
respond to any other master on the bus.

With all of these modes, there are two types of transfer -
read and write. In write transfer, the master sends data to
slave; in read transfer, the master receives data from slave.
Write and read transfer examples are available in Master
Mode Transfer Examples on page 133, Slave Mode
Transfer Examples on page 135, and Multi-Master Mode
Transfer Example on page 139.

Table 15-15. I2C Modes

Mode Description

Slave Slave only operation (default)

Master Master only operation

Multi-master Supports more than one master on the bus

Multi-master-slave
Simultaneous slave and multi-master
operation

Table 15-16. I2C Bus Events Terminology

Bus Event Description

START
A HIGH to LOW transition on the SDA line while
SCL is HIGH

STOP
A LOW to HIGH transition on the SDA line while
SCL is HIGH

ACK

The receiver pulls the SDA line LOW and it
remains LOW during the HIGH period of the
clock pulse, after the transmitter transmits each
byte. This indicates to the transmitter that the
receiver received the byte properly.

NACK

The receiver does not pull the SDA line LOW
and it remains HIGH during the HIGH period of
clock pulse after the transmitter transmits each
byte. This indicates to the transmitter that the
receiver received the byte properly.

Repeated
START

START condition generated by master at the end
of a transfer instead of a STOP condition

DATA
SDA status change while SCL is low (data
changing), and no change while SCL is high
(data valid)

126 PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

Serial Communications Block (SCB)

15.4.4.1 Write Transfer

Figure 15-23. Master Write Data Transfer

■ A typical write transfer begins with the master generating a START condition on the I2C bus. The master then writes a 7-
bit I2C slave address and a write indicator ('0') after the START condition. The addressed slave transmits an acknowl-
edgement byte by pulling the data line low during the ninth bit time.

■ If the slave address does not match any of the slave devices or if the addressed device does not want to acknowledge the
request, it transmits a no acknowledgement (NACK) by not pulling the SDA line low. The absence of an acknowledge-
ment, results in an SDA line value of '1' due to the pull-up resistor implementation.

■ If no acknowledgement is transmitted by the slave, the master may end the write transfer with a STOP event. The master
can also generate a repeated START condition for a retry attempt.

■ The master may transmit data to the bus if it receives an acknowledgement. The addressed slave transmits an acknowl-
edgement to confirm the receipt of every byte of data written. Upon receipt of this acknowledgement, the master may
transmit another data byte.

■ When the transfer is complete, the master generates a STOP condition.

15.4.4.2 Read Transfer

Figure 15-24. Master Read Data Transfer

■ A typical read transfer begins with the master generating
a START condition on the I2C bus. The master then
writes a 7-bit I2C slave address and a read indicator ('1')
after the START condition. The addressed slave trans-
mits an acknowledgement by pulling the data line low
during the ninth bit time.

■ If the slave address does not match with that of the con-
nected slave device or if the addressed device does not
want to acknowledge the request, a no acknowledge-
ment (NACK) is transmitted by not pulling the SDA line

low. The absence of an acknowledgement, results in an
SDA line value of '1' due to the pull-up resistor imple-
mentation.

■ If no acknowledgement is transmitted by the slave, the
master may end the read transfer with a STOP event.
The master can also generate a repeated START condi-
tion for a retry attempt.

■ If the slave acknowledges the address, it starts transmit-
ting data after the acknowledgement signal. The master

MSB LSBSDA

SCL

START Slave address (7 bits) Write ACK ACKData(8 bits) STOP

Write data transfer(Master writes the data)

LEGEND :

SDA: Serial Data Line

SCL: Serial Clock Line(always driven by the master)

Slave Transmit / Master Receive

MSB LSB

START Slave address (7 bits) Read ACK ACKData(8 bits) STOP

Read data transfer(Master reads the data)

SDA

SCL

LEGEND :

SDA: Serial Data Line

SCL: Serial Clock Line(always driven by the master)

Slave Transmit / Master Receive

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B 127

Serial Communications Block (SCB)

transmits an acknowledgement to confirm the receipt of
each data byte sent by the slave. Upon receipt of this
acknowledgement, the addressed slave may transmit
another data byte.

■ The master can send a NACK signal to the slave to stop
the slave from sending data bytes. This completes the
read transfer.

■ When the transfer is complete, the master generates a
STOP condition.

15.4.5 Easy I2C (EZI2C) Protocol

The Easy I2C (EZI2C) protocol is a unique communication
scheme built on top of the I2C protocol by Cypress. It uses a
software wrapper around the standard I2C protocol to
communicate to an I2C slave using indexed memory
transfers. This removes the need for CPU intervention at the
level of individual frames.

The EZI2C protocol defines an 8-bit address that indexes a
memory array (8-bit wide 32 locations) located on the slave
device. Five lower bits of the EZ address are used to
address these 32 locations. The number of bytes transferred
to or from the EZI2C memory array can be found by
comparing the EZ address at the START event and the EZ
address at the STOP event.

Note The I2C block has a hardware FIFO memory, which is
16 bits wide and 16 locations deep with byte write enable.
The access methods for EZ and non-EZ functions are
different. In non-EZ mode, the FIFO is split into TXFIFO and
RXFIFO. Each has 16-bit wide eight locations. In EZ mode,
the FIFO is used as a single memory unit with 8-bit wide 32
locations.

EZI2C has two types of transfers: a data write from the
master to an addressed slave memory location, and a read
by the master from an addressed slave memory location.

15.4.5.1 Memory Array Write

An EZ write to a memory array index is by means of an I2C
write transfer. The first transmitted write data is used to send
an EZ address from the master to the slave. The five lowest
significant bits of the write data are used as the "new" EZ
address at the slave. Any additional write data elements in
the write transfer are bytes that are written to the memory
array. The EZ address is automatically incremented by the
slave as bytes are written into the memory array. If the
number of continuous data bytes written to the EZI2C buffer
exceeds EZI2C buffer boundary, it overwrites the last
location for every subsequent byte.

15.4.5.2 Memory Array Read

An EZ read from a memory array index is by means of an
I2C read transfer. The EZ read relies on an earlier EZ write
to have set the EZ address at the slave. The first received
read data is the byte from the memory array at the EZ

address memory location. The EZ address is automatically
incremented as bytes are read from the memory array. The
address wraps around to zero when the final memory
location is reached.

128 PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

Serial Communications Block (SCB)

Figure 15-25. EZI2C Write and Read Data Transfer

15.4.6 I2C Registers

The I2C interface is controlled by reading and writing a set of configuration, control, and status registers, as listed in
Table 15-17.

LEGEND :

MS
B

LS
BSDA

SCL

START Slave address (7 bits) Write ACK ACKEZ address(8 bits) STOP

Write data transfer(single write data)

MSB LSB

START Slave address (7 bits) Read ACK ACKRead Data(8 bits) STOP

Read data transfer(single read data)

SDA

SCL

SDA: Serial Data Line

SCL: Serial Clock Line(always driven by the master)

Slave Transmit / Master Receive

Write Data(8 bits) ACK

EZ address

Address

Data

EZ Buffer
(32 bytes SRAM)

Table 15-17. I2C Registers

Register Function

SCB_CTRL
Enables the SCBI2C block and selects the type of serial interface (SPI, UART, I2C). Also used to select
internally and externally clocked operation and EZ and non-EZ modes of operation.

SCB_I2C_CTRL Selects the mode (master, slave) and sends an ACK or NACK signal based on receiver FIFO status.

SCB_I2C_STATUS
Indicates bus busy status detection, read/write transfer status of the slave/master, and stores the EZ slave
address.

SCB_I2C_M_CMD Enables the master to generate START, STOP, and ACK/NACK signals.

SCB_I2C_S_CMD Enables the slave to generate ACK/NACK signals.

SCB_STATUS
Indicates whether the externally clocked logic is using the EZ memory. This bit can be used by software to
determine whether it is safe to issue a software access to the EZ memory.

SCB_I2C_CFG Configures filters, which remove glitches from the SDA and SCL lines.

SCB_TX_CTRL Specifies the data frame width; also used to specify whether MSB or LSB is the first bit in transmission.

SCB_TX_FIFO_CTRL
Specifies the trigger level, clearing of the transmitter FIFO and shift registers, and FREEZE operation of the
transmitter FIFO.

SCB_TX_FIFO_STATUS
Indicates the number of bytes stored in the transmitter FIFO, the location from which a data frame is read by
the hardware (read pointer), the location from which a new data frame is written (write pointer), and decides
if the transmitter FIFO holds the valid data.

SCB_TX_FIFO_WR Holds the data frame written into the transmitter FIFO. Behavior is similar to that of a PUSH operation.

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B 129

Serial Communications Block (SCB)

Note Detailed descriptions of the I2C register bits are available in the PSoC 4100M/4200M Family: PSoC 4 Registers TRM.

15.4.7 I2C Interrupts

The fixed-function I2C block generates interrupts for the
following conditions.

■ I2C Master

❐ I2C master lost arbitration

❐ I2C master received NACK

❐ I2C master received ACK

❐ I2C master sent STOP

❐ I2C bus error (unexpected stop/start condition
detected)

■ I2C Slave

❐ I2C slave lost arbitration

❐ I2C slave received NACK

❐ I2C slave received ACK

❐ I2C slave received STOP

❐ I2C slave received START

❐ I2C slave address matched

❐ I2C bus error (unexpected stop/start condition
detected)

■ TX

❐ TX FIFO has less entries than the value specified by
TRIGGER_LEVEL in SCB_TX_FIFO_CTRL

❐ TX FIFO is not full

❐ TX FIFO is empty

❐ TX FIFO overflow

❐ TX FIFO underflow

■ RX

❐ RX FIFO has less entries than the value specified by
TRIGGER_LEVEL in SCB_RX_FIFO_CTRL

❐ RX FIFO is full

❐ RX FIFO is not empty

❐ RX FIFO overflow

❐ RX FIFO underflow

■ I2C Externally Clocked

❐ Wake up request on address match

❐ I2C STOP detection at the end of each transfer

❐ I2C STOP detection at the end of a write transfer

❐ I2C STOP detection at the end of a read transfer

The I2C interrupt signal is hard-wired to the Cortex-M0 NVIC
and cannot be routed to external pins.

The interrupt output is the logical OR of the group of all
possible interrupt sources. The interrupt is triggered when
any of the enabled interrupt conditions are met. Interrupt
status registers are used to determine the actual source of
the interrupt. For more information on interrupt registers,
see the PSoC 4100M/4200M Family: PSoC 4 Registers
TRM.

15.4.8 Enabling and Initializing the I2C

The following section describes the method to configure the
I2C block for standard (non-EZ) mode and EZI2C mode.

15.4.8.1 Configuring for I2C Standard (Non-
EZ) Mode

The I2C interface must be programmed in the following
order.

1. Program protocol specific information using the
SCB_I2C_CTRL register according to Table 15-18. This
includes selecting master - slave functionality.

2. Program the generic transmitter and receiver information
using the SCB_TX_CTRL and SCB_RX_CTRL regis-
ters, as shown in Table 15-19.

a. Specify the data frame width.

b. Specify that MSB is the first bit to be transmitted/
received.

SCB_RX_CTRL
Performs the same function as that of the SCB_TX_CTRL register, but for the receiver. Also decides
whether a median filter is to be used on the input interface lines.

SCB_RX_FIFO_CTRL Performs the same function as that of the SCB_TX_FIFO_CTRL register, but for the receiver.

SCB_RX_FIFO_STATUS Performs the same function as that of the SCB_TX_FIFO_STATUS register, but for the receiver.

SCB_RX_FIFO_RD
Holds the data read from the receiver FIFO. Reading a data frame removes the data frame from the FIFO;
behavior is similar to that of a POP operation. This register has a side effect when read by software: a data
frame is removed from the FIFO.

SCB_RX_FIFO_RD_SILENT
Holds the data read from the receiver FIFO. Reading a data frame does not remove the data frame from the
FIFO; behavior is similar to that of a PEEK operation.

SCB_RX_MATCH Stores slave device address and is also used as slave device address MASK.

SCB_EZ_DATA Holds the data in an EZ memory location.

Table 15-17. I2C Registers

Register Function

http://www.cypress.com/?rid=111232
http://www.cypress.com/?rid=111232
http://www.cypress.com/?rid=111232

130 PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

Serial Communications Block (SCB)

3. Program transmitter and receiver FIFO using the
SCB_TX_FIFO_CTRL and SCB_RX_FIFO_CTRL regis-
ters, respectively, as shown in Table 15-20.

a. Set the trigger level.

b. Clear the transmitter and receiver FIFO and Shift
registers.

4. Program the SCB_CTRL register to enable the I2C block
and select the I2C mode. These register bits are shown
in Table 15-21. For a complete description of the I2C
registers, see the PSoC 4100M/4200M Family: PSoC 4
Registers TRM.

15.4.8.2 Configuring for EZI2C Mode

To configure the I2C block for EZI2C mode, set the following
I2C register bits

1. Select the EZI2C mode by writing '1' to the EZ_MODE
bit (bit 10) of the SCB_CTRL register.

2. Follow steps 2 to 4 mentioned in Configuring for I2C
Standard (Non-EZ) Mode.

3. Set the S_READY_ADDR_ACK (bit 12) and
S_READY_DATA_ACK (bit 13) bits of the
SCB_I2C_CTRL register.

15.4.9 Internal and External Clock
Operation in I2C

The I2C block supports both internally and externally
clocked operation for data-rate generation. Internally
clocked operations use a clock signal derived from the
PSoC system bus clock. Externally clocked operations use a
clock provided by the user. Externally clocked operation
allows limited functionality in the Deep-Sleep power mode,
in which on-chip clocks are not active. For more information
on system clocking, see the Clocking System chapter on
page 61.

Table 15-18. SCB_I2C_CTRL Register

Bits Name Value Description

30 SLAVE_MODE 1 Slave mode

31 MASTER_MODE 1 Master mode

Table 15-19. SCB_TX_CTRL/SCB_RX_CTRL Register

Bits Name Description

[3:0] DATA_ WIDTH
'DATA_WIDTH + 1' is the number of bits in the transmitted or received data
frame. For I2C, this is always 7.

8 MSB_FIRST
1= MSB first (this should always be true for I2C)

0= LSB first

9 MEDIAN

This is for SCB_RX_CTRL only.

Decides whether a digital three-tap median filter is applied on the input interface
lines. This filter should reduce susceptibility to errors, but it requires higher overs-
ampling values.

1=Enabled

0=Disabled

Table 15-20. SCB_TX_FIFO_CTRL/ SCB_RX_FIFO_CTRL

Bits Name Description

[7:0] TRIGGER_LEVEL
Trigger level. When the transmitter FIFO has less entries or the receiver FIFO
has more entries than the value of this field, a transmitter or receiver trigger event
is generated in the respective case.

16 CLEAR When '1', the transmitter or receiver FIFO and the shift registers are cleared.

17 FREEZE
When '1', hardware reads/writes to the transmitter or receiver FIFO have no
effect. Freeze does not advance the TX or RX FIFO read/write pointer.

Table 15-21. SCB_CTRL Registers

Bits Name Value Description

[25:24] MODE

00 I2C mode

01 SPI mode

10 UART mode

11 Reserved

31 ENABLED
0 SCB block disabled

1 SCB block enabled

http://www.cypress.com/?rid=111232
http://www.cypress.com/?rid=111232

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B 131

Serial Communications Block (SCB)

Externally clocked operation is limited to the following
cases:

■ Slave functionality.

■ EZ functionality.

TX and RX FIFOs do not support externally clocked
operation; therefore, it is not used for non-EZ functionality.

Internally and externally clocked operations are determined
by two register fields of the SCB_CTRL register:

■ EC_AM_MODE (Externally Clocked Address Match-
ing Mode): Indicates whether I2C address matching is
internally ('0') or externally ('1') clocked.

■ EC_OP_MODE (Externally Clocked Operation Mode):
Indicates whether the rest of the protocol operation
(besides I2C address match) is internally ('0') or exter-
nally ('1') clocked. As mentioned earlier, externally
clocked operation does not support non-EZ functionality.

These two register fields determine the functional behavior
of I2C. The register fields should be set based on the
required behavior in Active, Sleep, and Deep-Sleep system
power modes. Improper setting may result in faulty behavior
in certain power modes. Table 15-22 and Table 15-23
describe the settings for I2C in EZ and non-EZ mode.

15.4.9.1 I2C Non-EZ Mode of Operation

Externally clocked operation is not supported for non-EZ
functionality because there is no FIFO support for this
mode. So, the EC_OP_MODE should always be set to '0' for
non-EZ mode. However, EC_AM_MODE can be set to '0' or
'1'. Table 15-22 gives an overview of the possibilities. The
combination EC_AM_MODE = 0 and EC_OP_MODE = 1 is
invalid and the block will not respond.

EC_AM_MODE is '0' and EC_OP_MODE is '0'. This
setting only works in Active and Sleep system power
modes. All the functionality of the I2C is provided in the
internally clocked domain.

EC_AM_MODE is '1' and EC_OP_MODE is '0'. This
setting works in Active, Sleep, and Deep-Sleep system
power modes. I2C address matching is performed by the
externally clocked logic in Active, Sleep, and Deep-Sleep
system power modes. When the externally clocked logic
matches the address, it sets a wakeup interrupt cause bit,
which can be used to generate an interrupt to wakeup the
CPU.

■ In Active system power mode, the CPU is active and the

wakeup interrupt cause is disabled (associated MASK
bit is '0'). The externally clocked logic takes care of the
address matching and the internally locked logic takes
care of the rest of the I2C transfer.

■ In the Sleep mode, wakeup interrupt cause can be either
enabled or disabled based on the application. The
remaining operations are similar to the Active mode.

■ In the Deep-Sleep mode, the CPU is shut down and will
wake up on I2C activity if the wakeup interrupt cause is
enabled. CPU wakeup up takes time and the ongoing
I2C transfer is either negatively acknowledged (NACK)
or the clock is stretched. In the case of a NACK, the
internally clocked logic takes care of the first I2C transfer
after it wakes up. For clock stretching, the internally
clocked logic takes care of the ongoing/stretched trans-
fer when it wakes up. The register bit
S_NOT_READY_ADDR_NACK (bit 14) of the

SCB_I2C_CTRL register determines whether the exter-
nally clocked logic performs a negative acknowledge
('1') or clock stretch ('0').

15.4.9.2 I2C EZ Operation Mode

EZ mode has three possible settings. EC_AM_MODE can
be set to '0' or '1' when EC_OP_MODE is '0' and
EC_AM_MODE must be set to '1' when EC_OP_MODE is
'1'. Table 15-23 gives an overview of the possibilities. The
grey cells indicate a possible, yet not recommended setting
because it involves a switch from the externally clocked
logic (slave selection) to the internally clocked logic (rest of
the operation). The combination EC_AM_MODE = 0 and
EC_OP_MODE = 1 is invalid and the block will not respond.

Table 15-22. I2C Operation in Non-EZ Mode

I2C (Non-EZ) Mode

System Power
Mode

EC_OP_MODE = 0 EC_OP_MODE = 1

EC_AM_MODE = 0 EC_AM_MODE = 1 EC_AM_MODE = 0 EC_AM_MODE = 1

Active and Sleep
Address match using internal
clock.

Operation using internal clock.

Address match using external
clock.

Operation using internal clock.
Not supported

Deep-Sleep Not supported
Address match using external
clock.

Operation using internal clock.

Hibernate
The SCB is not available in these modes (see the Power Modes chapter on page 75).

Stop

132 PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

Serial Communications Block (SCB)

■ EC_AM_MODE is '0' and EC_OP_MODE is '0'. This
setting only works in Active and Sleep system power
modes.

■ EC_AM_MODE is '1' and EC_OP_MODE is '0'. This
setting works same as I2C non-EZ mode.

■ EC_AM_MODE is '1' and EC_OP_MODE is '1'. This
setting works in Active and Deep-Sleep system power
modes.

The I2C block’s functionality is provided in the externally
clocked domain. Note that this setting results in externally
clocked accesses to the block's SRAM. These accesses
may conflict with internally clocked accesses from the
device. This may cause wait states or bus errors. The field
FIFO_BLOCK (bit 17) of the SCB_CTRL register determines
whether wait states ('1') or bus errors ('0') are generated.

15.4.10 Wake up from Sleep

The system wakes up from Sleep or Deep-Sleep system
power modes when an I2C address match occurs. The
fixed-function I2C block performs either of two actions after
address match: Address ACK or Address NACK.

Address ACK - The I2C slave executes clock stretching
and waits until the device wakes up and ACKs the address.

Address NACK - The I2C slave NACKs the address
immediately. The master must poll the slave again after the
device wakeup time is passed. This option is only valid in
the slave or multi-master-slave modes.

Note The interrupt bit WAKE_UP (bit 0) of the
SCB_INTR_I2C_EC register must be enabled for the I2C to
wake up the device on slave address match while switching
to the Sleep mode.

Table 15-23. I2C Operation in EZ Mode

I2C, EZ Mode

System Power Mode
EC_OP_MODE= 0 EC_OP_MODE = 1

EC_AM_MODE = 0 EC_AM_MODE = 1 EC_AM_MODE = 0 EC_AM_MODE = 1

Active and Sleep

Address match using inter-
nal clock

Operation using internal
clock

Address match using
external clock

Operation using internal
clock

Invalid

Address match using
external clock

Operation using exter-
nal clock

Deep-Sleep Not supported

Address match using
external clock

Operation using internal
clock

Address match using
external clock

Operation using exter-
nal clock

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B 133

Serial Communications Block (SCB)

15.4.11 Master Mode Transfer Examples

Master mode transmits or receives data.

15.4.11.1 Master Transmit

Figure 15-26. Single Master Mode Write Operation Flow Chart

Begin

Disable Fixed
Function I2C block

Select Master
mode

Enable
TX FIFO

Enable SCB I2C
block

Transmission
of one byte

slave address
complete?

No
(stretch)

E

Address ACK’ed or
NACK’ed?

Error

Yes

NACK STOP/
RESTART

Set Fixed
Function I2C

block to transmit
mode

Transmission
of one byte

data complete?

Byte ACK’ed or
NACK’ed?

Yes

NACK STOP/
RESTART

Data transfer
complete?

ACK

No

Send STOP
signal

Yes

Send START
signal

ACK

No
(stretch)

E
Error

STOP

E

Report and
handle error

TX FIFO
Empty?

EYes

No

RESTART

End

134 PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

Serial Communications Block (SCB)

15.4.11.2 Master Receive

Figure 15-27. Single Master Mode Read Operation Flow Chart

Begin

Disable Fixed
Function I2C block

Select Master
mode

Enable
RX FIFO

Enable Fixed
Function I2C block

Transmission
of one byte

slave address
complete?

No
(stretch)

E

Address ACK’ed or
NACK’ed?

Error

Yes

NACK STOP/
RESTART

Set Fixed Function
I2C block

to receive mode

Receiving
one byte data

complete?

RX FIFO
full?

Yes

Yes
E

Data transfer
complete?

No

Send STOP
signal

Yes

Send START
signal

ACK

E
Error

STOP

E

Report and
handle error

Send ACK

Send NACK

No

No

RESTART

End

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B 135

Serial Communications Block (SCB)

15.4.12 Slave Mode Transfer Examples

Slave mode transmits or receives data.

15.4.12.1 Slave Transmit

Figure 15-28. Slave Mode Write Operation Flow Chart

Begin

Disable Fixed
Function I2C block

Select Slave
mode

Enable
TX FIFO

Enable Fixed
Function I2C block

Receiving
one byte slave

address
complete?

No
(stretch)

E

Address ACK’ed or
NACK’ed?

Error

Yes

NACK

Set Fixed Function
I2C block

to transmit mode

Transmitting one byte
data complete?

TX FIFO
empty?

Yes

Yes
E

Byte ACK’ed
or NACK’ed?

ACK

ACK

No
E

Error

Begin

E

Report and
handle error

START detected

Wake up

No

NACK

Data transfer
complete?

No

Yes

End

136 PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

Serial Communications Block (SCB)

15.4.12.2 Slave Receive

Figure 15-29. Slave Mode Read Operation Flow Chart

Begin

Disable Fixed
Function I2C block

Select Slave
mode

Enable
RX FIFO

Enable Fixed
Function I2C block

Receiving
one byte

slave address
complete?

No
(stretch)

E

Address ACK’ed or
NACK’ed?

Error

Yes

NACK

Set Fixed Function
I2C block to

receive mode

Receiving one byte
data complete?

RX FIFO
full?

Yes

Yes
E

ACK

No
(stretch)

E
Error

E

Report and
handle error

START detected

Wake up

No

Data transfer
complete?

No

Yes

Send
ACK

Send
NACK

End

Enable Fixed
Function I2C block

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B 137

Serial Communications Block (SCB)

15.4.13 EZ Slave Mode Transfer Example

The EZ Slave mode transmits or receives data.

15.4.13.1 EZ Slave Transmit

Figure 15-30. EZI2C Slave Mode Write Operation Flow Chart

Transmitting one byte
data complete?

EZ buffer
empty?

Yes

Yes
E

Byte ACK’ed
or NACK’ed?

ACK

No
E

Error

Begin

No

NACK

Data transfer
complete?

No

Yes

Select transmit
mode

E

Report and
handle error

Begin

Disable Fixed
Function I2C block

Select Slave
mode

Enable
TX FIFO

Enable Fixed
Function I2C block

Select EZ
mode

Receiving
one byte

slave address
complete?

No
(stretch)

E

Address ACK’ed or
NACK’ed?

Error

Yes

NACK

START detected

Wake up

Wait for START End

138 PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

Serial Communications Block (SCB)

15.4.13.2 EZ Slave Receive

Figure 15-31. EZI2C Slave Mode Read Operation Flow Chart

Begin

Disable Fixed
Function I2C block

Select Slave
mode

Enable
RX FIFO

Enable Fixed
Function I2C block

Select EZ
mode

Receiving
one byte

slave address
complete?

No
(stretch)

E

Address ACK’ed or
NACK’ed?

Error

Yes

NACK

ACK

START detected

Wake up

Receiving one byte
data complete?

EZ buffer
full

Yes
E

No
(stretch)

E
Error

No

Select receive
mode

E

Report and
handle error

Receiving
one byte EZ

address
complete?

Address ACK’ed or
NACK’ed?

ACK

Begin
NACK

Yes

No
(stretch)

Yes

Data transfer
complete?

No

Yes

Send
ACK

Send
NACK

End

Wait for START

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B 139

Serial Communications Block (SCB)

15.4.14 Multi-Master Mode Transfer Example

In multi-master mode, data can be transferred with the slave mode enabled or not enabled.

15.4.14.1 Multi-Master - Slave Not Enabled

Figure 15-32. Multi-Master, Slave Not Enabled Flow Chart

Begin

D isable F ixed
Function I2C b lock

Select M aster
m ode

Enable
TX FIFO

Enable F ixed
Function I2C b lock

Send START
signal

Transm ission
of one byte

slave address
com plete?N o

(stretch)

E

Lost arb itra tion?

Error

Yes

Begin

Bus busy?

N o

Bus busy?
Yes

N o

Yes

N o

C ontinue w ith da ta transfer as
in sing le m aster

E

R eport and
handle error

Yes

End

140 PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

Serial Communications Block (SCB)

15.4.14.2 Multi-Master - Slave Enabled

Figure 15-33. Multi-Master, Slave Enabled Flow Chart

Begin

Disable F ixed
Function I2C block

Select M aster and
Slave m ode

Enable
TX FIFO

Enable Fixed
Function I2C block

Send START
signal

Transm ission
of one byte

slave address
com plete?

No
(stretch)

E

Bus busy or
lost arbitration?

Error

Yes

Bus busy?

No

Yes

No

Continue w ith data transfer as
in single m aster

E

Report and
handle error

Yes

Continue w ith address
recognition as a slave

End

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B 141

16. Universal Digital Blocks (UDB)

This chapter shows the design details of the PSoC® 4 universal digital blocks (UDBs). The UDB architecture implements a
balanced approach between configuration granularity and efficiency; UDBs have a combination of programmable logic
devices (PLDs), structured logic (datapaths), and a flexible routing scheme.

Note: The PSoC 4100M family does not have UDBs. See the device datasheet for details.

16.1 Features
■ PSoC 4 contains an array of four UDBs

■ For optimal flexibility, each UDB contains several components:

❐ An ALU-based 8-bit datapath (DP) with multiple registers, FIFOs, and an 8-word instruction store

❐ Two PLDs, each with 12 inputs, eight product terms, and four macrocell outputs

❐ Control and status modules

❐ Clock and reset modules

■ Flexible routing through the UDB array

■ Portions of UDBs can be shared or chained to enable larger functions

■ Flexible implementations of multiple digital functions, including timers, counters, PWM (with dead band generator), UART,
SPI, and CRC generation/checking

■ Register-based interface to CPU

Figure 16-1 shows the components of a single UDB: two PLDs, a datapath, and control, status, clock and reset functions.

Figure 16-1. Single UDB Block Diagram

PLD
12C4

(8 PTs)

PLD
12C4

(8 PTs)

Datapath

Clock
 and Reset

Control

Routing Channel

Datapath
Chaining

PLD
Chaining

Status and
Control

http://www.cypress.com/?id=4749&rtID=107&source=an85951

142 PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

Universal Digital Blocks (UDB)

Figure 16-2 shows how the array of four UDBs interfaces with the rest of the PSoC 4.

Figure 16-2. UDBs Array in PSoC 4

16.2 How It Works
The major components of a UDB are:

■ PLDs (2) – These blocks take inputs from the routing
channel and form registered or combinational sum-of-
products logic to implement state machines, control for
datapath operations, conditioning inputs, and driving out-
puts.

■ Datapath – This block contains a dynamically program-
mable ALU, four registers, two FIFOs, comparators, and
condition generation.

■ Control and Status – These modules provide a way for
CPU firmware to interact and synchronize with UDB
operation.

■ Reset and Clock Control – These modules provide
clock selection and enabling, and reset selection, for the
other blocks in the UDB.

■ Chaining Signals – The PLDs and datapath have
chaining signals that enable neighboring UDBs to be
linked, to create higher precision functions.

■ Routing Channel – UDBs are connected to the routing
channel through a programmable switch matrix for con-
nections between blocks in one UDB, and to all other
UDBs in the array.

■ System Bus Interface – All registers and RAM in each
UDB are mapped into the system address space and are
accessible by the CPU as 8, 16 and 32-bit accesses.

16.2.1 PLDs

Each UDB has two “12C4” PLDs. The PLD blocks, shown in
Figure 16-3, can be used to implement state machines, per-
form input or output data conditioning, and to create lookup
tables (LUTs). PLDs may also be configured to perform
arithmetic functions, sequence the datapath, and generate
status. General-purpose RTL can be synthesized and
mapped to the PLD blocks. This section presents an over-
view of the PLD design.

A PLD has 12 inputs, which feed across eight product terms
(PT) in the AND array. In a given product term, the true (T)
or complement (C) of the input can be selected. The outputs
of the PTs are inputs into the OR array. The 'C' in 12C4 indi-
cates that the OR terms are constant across all inputs, and
each OR input can programmatically access any or all of the
PTs. This structure gives maximum flexibility and ensures
that all inputs and outputs are permutable.

Programmable Digital Subsystem

UDBIF

UDB UDB

UDB UDB

DSI DSI

DSI DSI

BUS IF CLK IF Port IFPort IFPort IF

H
igh-S

p
ee

d
 I/O

 M
a

trix

CPUSS
(CPU Subsystem)

System Interconnect
(Single Layer AHB)

Dig. CLKs

4 to 88 to 32

Routing
Channels

O
th

er D
igital

S
ignals in C

hip

IRQ IF

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B 143

Universal Digital Blocks (UDB)

Figure 16-3. PLD 12C4 Structure

16.2.1.1 PLD Macrocells

Figure 16-4 shows the macrocell architecture. The output drives the routing array and can be registered or combinational.
The registered modes are D Flip-Flop (DFF) with true or inverted input and Toggle Flip-Flop (TFF) on input high or low. The
output register can be set or reset for purposes of initialization, or asynchronously during operation under control of a routed
signal.

Figure 16-4. PLD Macrocell Architecture

P
T

0

IN0

IN1

IN2

IN3

IN4

IN5

IN6

IN7

IN8

IN9

IN10

IN11

T C T C T C T C T C T C T C T C

T C T C T C T C T C T C T C T C

T C T C T C T C T C T C T C T C

T C T C T C T C T C T C T C T C

T C T C T C T C T C T C T C T C

T C T C T C T C T C T C T C T C

T C T C T C T C T C T C T C T C

T C T C T C T C T C T C T C T C

T C T C T C T C T C T C T C T C

T C T C T C T C T C T C T C T C

T C T C T C T C T C T C T C T C

T C T C T C T C T C T C T C T C

P
T

1

P
T

2

P
T

3

P
T

4

P
T

5

P
T

6

P
T

7

T T T T T T T T

T T T T T T T T

T T T T T T T T

T T T T T T T T

AND
Array

OR
Array

MC0

MC1

MC2

OUT0

OUT1

OUT2

OUT3MC3

Carry In

Carry Out

set

res

D Q

QB

From OR gate

out
0

1

0

1

2

3

reset

selin

Output Bypass (BYP)
0: Registered
1: Combinational

XOR Feedback (XORFB)
00: D FF
01: Arithmetic (Carry)
10: T FF on high
11: T FF on low

Set Select (SSEL)
0: Set not used
1: Set from input

Reset Select (RSEL)
0: Set not used
1: Set from input

0

1

0

1

Carry Out Enable (COEN)
0:Carry Out disabled
1: Carry Out enabled

Constant (CONST)
0: D FF true in
1: D FF inverted in

selout

(to next MC)

(from prev MC)

BYP

RSEL

SSEL

COEN

CONST

0

1

clk

To macrocell
read-only registercpt0

cpt1

pld_en

XORFB[1:0]

144 PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

Universal Digital Blocks (UDB)

PLD Macrocell Read-Only Registers

The outputs of the eight macrocells in the two PLDs can be accessed by the CPU as an 8-bit read-only register. Macrocells
across multiple UDBs can be accessed as 16 or 32-bit read-only registers. See UDB Addressing on page 173.

16.2.1.2 PLD Carry Chain

PLDs are chained together in UDB address order. As shown in Figure 16-5, the carry chain input “selin” is routed from the
previous UDB in the chain through each macrocell in both PLDs, and then to the next UDB as the carry chain out “selout”. To
support the efficient mapping of arithmetic functions, special product terms are generated and used in the macrocell in con-
junction with the carry chain.

Figure 16-5. PLD Carry Chain and Special Product Term Inputs

16.2.1.3 PLD Configuration

The PLDs can be configured by accessing a set of 16 or 32-bit registers; see UDB Addressing on page 173.

16.2.2 Datapath

The datapath, shown in Figure 16-6, contains an 8-bit single-cycle ALU, with associated compare and condition generation
circuits. A datapath may be chained with datapaths in neighboring UDBs to achieve higher precision functions. The datapath
includes a small dynamic configuration RAM, which can dynamically select the operation to perform in a given cycle. The dat-
apath is optimized to implement typical embedded functions such as timers, counters, PWMs, PRS, CRC, shifters, and dead
band generators. The add and subtract functions allow support for digital delta-sigma operations.

Figure 16-6. Datapath Top Level

selinMC0MC1MC2MC3MC0

cpt1,cpt0

MC1MC2MC3

{P
T

7
,P

T
6}

selout

PLD0PLD1

To the next
PLD block
in the chain

cpt1,cpt0cpt1,cpt0cpt1,cpt0 cpt1,cpt0cpt1,cpt0 cpt1,cpt0cpt1,cpt0

From the previous
PLD block in

the chain
{P

T
7

,P
T

6}

{P
T

5
,P

T
4}

{P
T

5,P
T

4}

{P
T

3
,P

T
2}

{P
T

3
,P

T
2}

{P
T

1
,P

T
0}

{P
T

1
,P

T
0}

ALU

A0

A1

D0

D1

PI

ALU

Mask

Shift

Data Registers

Output
Muxes

F1

F0

FIFOs

Accumulators

SRC A

PO

A0

A1

D0

D1

Output to
Programmable
Routing

Chaining

D
yn

am
ic C

o
n

fig
u

ratio
n

 R
A

M
8 W

o
rd

 X
 16

 b
it

Parallel Input/Output
(to/from Programmable

Routing)

Input from
Programmable

Routing

Input
Muxes

To/From
Next
Datapath

To/From
Prev

Datapath

D
ata

p
ath

 C
o

n
tro

l

System Bus

SRC B

R/W Access to all
registers

C
o

n
d

itio
n

s
2

 C
o

m
pares

2 Z
ero D

etect, 2 O
nes D

e
tect

O
verflow

 D
etect

66

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B 145

Universal Digital Blocks (UDB)

16.2.2.1 Overview

The following are key datapath features:

Dynamic Configuration

Dynamic configuration is the ability to change the datapath
function and interconnect on a cycle-by-cycle basis, under
sequencer control. This is implemented using the configura-
tion RAM, which stores eight unique configurations. The
address input to this RAM can be routed from any block
connected to the routing fabric, typically PLD logic, I/O pins,
or other datapaths.

ALU

The ALU can perform eight general-purpose functions:
increment, decrement, add, subtract, AND, OR, XOR, and
PASS. Function selection is controlled by the configuration
RAM on a cycle-by-cycle basis. Independent shift (left, right,
nibble swap) and masking operations are available at the
output of the ALU.

Conditionals

Each datapath has two comparators with bit masking
options, which can be configured to select a variety of data-
path register inputs for comparison. Other detectable condi-
tions include all zeros, all ones, and overflow. These
conditions form the primary datapath output selects to be
routed to the digital routing fabric as inputs to other func-
tions.

Built-in CRC/PRS

The datapath has built-in support for single-cycle cyclic
redundancy check (CRC) computation and pseudo random
sequence (PRS) generation of arbitrary width and arbitrary
polynomial specification. To achieve longer than 8-bit CRC/
PRS widths, signals may be chained between datapaths.
This feature is controlled dynamically and therefore, can be
interleaved with other functions.

Variable MSB

The most significant bit of an arithmetic and shift function
can be programmatically specified. This supports variable
width CRC/PRS functions and, in conjunction with ALU out-
put masking, can implement arbitrary width timers, counters,
and shift blocks.

Input/Output FIFOs

Each datapath contains two 4-byte FIFOs, which can be
individually configured for direction as an input buffer (CPU
writes to the FIFO, datapath internals read the FIFO), or an
output buffer (datapath internals write to the FIFO, the CPU
reads from the FIFO). These FIFOs generate full or empty
status signals that can be routed to interact with sequencers
or interrupts.

Chaining

The datapath can be configured to chain conditions and sig-
nals with neighboring datapaths. Shift, carry, capture, and
other conditional signals can be chained to form higher pre-

cision arithmetic, shift, and CRC/PRS functions.

Time Multiplexing

In applications that are oversampled or do not need the
highest clock rates, the single ALU block in the datapath can
be efficiently shared between two sets of registers and con-
dition generators. ALU and shift outputs are registered and
can be used as inputs in subsequent cycles. Usage exam-
ples include support for 16-bit functions in one (8-bit) data-
path, or interleaving a CRC generation operation with a data
shift operation.

Datapath Inputs

The datapath has three types of inputs: configuration, con-
trol, and serial and parallel data. The configuration inputs
select the dynamic configuration RAM address. The control
inputs load the data registers from the FIFOs and capture
accumulator outputs into the FIFOs. Serial data inputs
include shift in and carry in. A parallel data input port allows
up to eight bits of data to be brought in from routing.

Datapath Outputs

A total of 16 signals are generated in the datapath. Some of
these signals are conditional signals (for example, com-
pares), some are status signals (for example, FIFO status),
and the rest are data signals (for example, shift out). These
16 signals are multiplexed into the six datapath outputs and
then driven to the routing matrix. By default, the outputs are
single synchronized (pipelined). A combinational output
option is also available for these outputs.

Datapath Working Registers

Each datapath module has six 8-bit working registers. All
registers are readable and writable by CPU.

146 PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

Universal Digital Blocks (UDB)

16.2.2.2 Datapath FIFOs

FIFO Modes and Configurations

Each FIFO has a variety of operation modes and configurations.

Figure 16-7 shows the possible FIFO configurations controlled by the input/output modes. The TX/RX mode has one FIFO in
input mode and the other in output mode. The primary example of this configuration is SPI. The dual capture configuration
provides independent capture of A0 and A1, or two separately controlled captures of either A0 or A1. Finally, the dual buffer
mode can provide buffered periods and compares, or two independent periods/compares.

Table 16-1. Datapath Working Registers

Type Name Description

Accumulator A0, A1
The accumulators may be both a source and a destination for the ALU. They may also be loaded from a Data
register or a FIFO. The accumulators typically contain the current value of a function, such as a count, CRC, or
shift. These registers are non-retention; they lose their values in sleep and are reset to 0x00 on wakeup.

Data D0, D1
The Data registers typically contain constant data for a function, such as a PWM compare value, timer period,
or CRC polynomial. These registers retain their values across sleep intervals.

FIFOs F0, F1

The two 4-byte FIFOs provide both a source and a destination for buffered data. The FIFOs can be configured
as both input buffers, both output buffers, or as one input buffer and one output buffer. Status signals indicate
the full/empty status of these registers. Usage examples include buffered TX and RX data in the SPI or UART
and buffered PWM compare and buffered timer period data. These registers are non-retention; they lose their
values in sleep and are reset to 0x00 on wakeup.

Table 16-2. FIFO Modes and Configurations

Mode Description

Input/Output
In input mode, the CPU writes to the FIFO and the data is read and consumed by the datapath internals. In
output mode, the FIFO is written to by the datapath internals and is read and consumed by the CPU.

Single Buffer
The FIFO operates as a single-byte buffer with no status. Data written to the FIFO is immediately available for
reading, and can be overwritten at anytime.

Level/Edge The control to load the FIFO from the datapath internals can be either level or edge triggered.

Normal/Fast
The control to load the FIFO from the datapath source is sampled on the currently selected datapath clock
(normal) or the HFCLK (fast). This allows captures to occur at the highest rate in the system (HFCLK), inde-
pendent of the datapath clock.

Software

Capture

When this mode is enabled and the FIFO is in output mode, a read by the CPU of the associated accumulator
(A0 for F0, A1 for F1) initiates a synchronous transfer of the accumulator value into the FIFO. The captured
value may then be immediately read from the FIFO. If chaining is enabled, the operation follows the chain to
the MS block for atomic reads by datapaths of multi-byte values.

Asynch
When the datapath is being clocked asynchronously to the HFCLK, the FIFO status signals can be routed to
the rest of the datapath either directly, single sampled to the datapath clock, or double sampled in the case of
an asynchronous datapath clock

Independent Clock Polarity Each FIFO has a control bit to invert polarity of the FIFO clock with respect to the datapath clock.

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B 147

Universal Digital Blocks (UDB)

Figure 16-7. FIFO Configurations

Figure 16-8 shows a detailed view of FIFO sources and sinks.

Figure 16-8. FIFO Sources and Sinks

When the FIFO is in input mode, the source is the system bus and the sinks are the Dx and Ax registers. When in output
mode, the sources include the Ax registers and the ALU, and the sink is the system bus. The multiplexer selection is statically
set in UDB configuration register CFG15, as shown in Table 16-3 for the F0_INSEL[1:0] or F1_INSEL[1:0].

Table 16-3. FIFO Multiplexer Set in UDB CFG15 Register

Fx_INSEL[1:0] Description

00 Input mode - System bus writes the FIFO, FIFO output destination is Ax or Dx.

01 Output A0 Mode - FIFO input source is A0, FIFO output destination is the system bus.

10 Output A1 Mode - FIFO input source is A1, FIFO output destination is the system bus.

11 Output ALU Mode - FIFO input source is the ALU output, FIFO output destination is the system bus.

System Bus

F0

F1

System Bus

A0/A1/ALU

D0/D1

A0/A1/ALU

System Bus

F1

A0/A1/ALU

F0

D0

System Bus

F1

A0

D1

A1

F0

TX/RX Dual Capture Dual Buffer

FIFO F1

D1

A1

U
D

B
 L

ocal D
ata B

us

FIFO F0

D0

A0

A
0

A
0

A
1

A
1

A
L

U

A
L

U

148 PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

Universal Digital Blocks (UDB)

FIFO Status

Each FIFO generates two status signals, “bus” and “block,” which are sent to the UDB routing through the datapath output
multiplexer. The “bus” status can be used to assert an interrupt request to read/write the FIFO. The “block” status is primarily
intended to provide the FIFO state to the UDB internals. The meanings of the status bits depend on the configured direction
(Fx_INSEL[1:0] in the UDB CFG15 register) and the FIFO level bits. The FIFO level bits (Fx_LVL) are set in the Auxiliary Con-
trol Working register (ACTL) in working register space. Table 16-4 shows the options.

FIFO Operation

Figure 16-9 illustrates a typical sequence of reads and writes and the associated status generation. Although the figure shows
reads and writes occurring at different times, a read and write can also occur simultaneously.

Figure 16-9. Detailed FIFO Operation Sinks

Table 16-4. FIFO Status Options

Fx_INSEL[1:0] Fx_LVL FIFO Status
FIFO Status

Signal
Description

Input 0 Not Full Bus Status Asserted when there is room for at least 1 byte in the FIFO.

Input 1
At Least Half
Empty

Bus Status Asserted when there is room for at least 2 bytes in the FIFO.

Input NA Empty Block Status
Asserted when there are no bytes left in the FIFO. When not empty, the dat-
apath internals may consume bytes. When empty the datapath may idle or
generate an underrun condition.

Output 0 Not Empty Bus Status Asserted when there is at least 1 byte available to be read from the FIFO.

Output 1
At Least Half
Empty

Bus Status Asserted when there are at least 2 bytes available to be read from the FIFO.

Output NA Full Block Status
Asserted when the FIFO is full. When not full, the datapath internals may
write bytes to the FIFO. When full, the datapath may idle or generate an
overrun condition.

WR_PTR

RD_PTR RD_PTR

Reset Write 2 bytes

Empty = 1

At Least Half Empty = 1

D0

D1

Full = 0

At Least Half Full = 0

Empty = 0

At Least Half Empty = 1

Full = 0

At Least Half Full = 1

Write 2 more bytes

Empty = 0

At Least Half Empty = 0

Full = 1

At Least Half Full = 1

D0

D1

D2

D3

WR_PTR

WR_PTR

RD_PTR

Read 3 bytes

Empty = 0

At Least Half Empty = 1

Full = 0

At Least Half Full = 0

X

X

X

D3
RD_PTR

WR_PTR

Write 2 bytes

Empty = 0

At Least Half Empty = 0

Full = 0

At Least Half Full = 1

D4

D5

X

D3
RD_PTR

WR_PTR

Read 2 bytes

Empty = 0

At Least Half Empty = 1

Full = 0

At Least Half Full = 0

X

D5

X

X

RD_PTR

WR_PTR

Read 1 bytes

Empty = 1

At Least Half Empty = 1

Full = 0

At Least Half Full = 0

X

X

X

X

RD_PTR

WR_PTR

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B 149

Universal Digital Blocks (UDB)

FIFO Fast Mode (FIFO FAST)

When the FIFO is configured for output, the FIFO load operation normally uses the currently selected datapath clock for sam-
pling the write signal. As shown in Figure 16-10, with the FIFO fast mode set, the HFCLK can be optionally selected for this
operation. Used in conjunction with edge sensitive mode, this operation reduces the latency of accumulator-to-FIFO transfer
from the resolution of the datapath clock to the resolution of the HFCLK, which can be much higher. This allows the CPU to
read the captured result in the FIFO with minimal latency.

Figure 16-10 illustrates that the fast load operation is independent of the currently selected datapath clock; however, using
the HFCLK may cause higher power consumption. Note that the incoming fx_ld signal must be able to meet HFCLK timing,
which can require local resynchronization.

Figure 16-10. FIFO Fast Configuration Sinks

FIFO Level/Edge Write Mode

Two modes are available for writing the FIFO from the data-
path. In the first mode, data is synchronously transferred
from the accumulators to the FIFOs. The control for that
write (fx_ld) is typically generated from a state machine or
condition that is synchronous to the datapath clock. The
FIFO is written in any cycle where the input load control is a
'1'.

In the second mode, the FIFO is used to capture the value
of the accumulator in response to a positive edge of the
fx_ld signal. In this mode the duty cycle of the waveform is
arbitrary (however, it must be at least one datapath clock
cycle in width). An example of this mode is capturing the
value of the accumulator using an external pin input as a
trigger. The limitation of this mode is that the input control
must revert to '0' for at least one cycle before another posi-
tive edge is detected.

Figure 16-11 shows the edge detect option on the fx_ld con-
trol input. One bit for this option sets the mode for both
FIFOs in a UDB. Note that edge detection is sampled at the
rate of the selected FIFO clock.

Figure 16-11. Edge Detect Option for Internal FIFO Write

FIFO Software Capture Mode

A common and important requirement is to allow the CPU
the ability to reliably read the contents of an accumulator
during normal operation. This is done with software capture
and is enabled by setting the FIFO Cap configuration bit
(FIFO_CAP bit in the UDB CFG16 register). This bit applies
to both FIFOs in a UDB, but is only operational when a FIFO
is in output mode. When using software capture, F0 should
be set to load from A0 and F1 from A1.

As shown in Figure 16-12, reading the accumulator triggers
a write to the FIFO from that accumulator. This signal is
chained so that a read of a given byte simultaneously cap-
tures accumulators in all chained UDBs. This allows the
CPU to reliably read 16 bits or more simultaneously. The
data returned in the read of the accumulator should be
ignored; the captured value may be read from the FIFOs
immediately.

The fx_ld signal, which generates a FIFO load, is ORed with
the software capture signal; the results can be unpredictable
when both hardware and software capture are used at the
same time. As a general rule, these functions should be
mutually exclusive; however, hardware and software cap-
ture can be used simultaneously with the following settings:

■ FIFO capture clocking mode is set to FIFO FAST

■ FIFO write mode is set to FIFO EDGE

With these settings, hardware and software capture work
essentially the same and in any given HFCLK cycle, either
signal asserted initiates a capture.

It is also recommended to clear the target FIFO in firmware
(UDB ACTL register) before initiating a software capture.
This initializes the FIFO read and write pointers to a known
state.

FIFO
(In Output Mode)

DP clk

HFCLK

DP Operation

fx_ld

FIFO Fast

0

1

HFCLK

digital
clocks

UDB DP
Clock Mux

Write

FF

0

1fx_ld (from Routing)

FIFO Edge

fx_write

0

1

FIFO Fast

dp_clk

HFCLK

150 PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

Universal Digital Blocks (UDB)

Figure 16-12. Software Capture Configuration

FIFO Control Bits

The Auxiliary Control register (ACTL) has four bits that may
be used by the CPU firmware to control the FIFO during nor-
mal operation.

The FIFO0 CLR and FIFO1 CLR bits are used to reset or
flush the FIFO. When a '1' is written to one of these bits, the
associated FIFO is reset. The bit must be written back to '0'
for FIFO operation to continue. If the bit is left asserted, the
given FIFO is disabled and operates as a one byte buffer
without status. Data can be written to the FIFO; the data is
immediately available for reading and can be overwritten at
anytime. Data direction using the Fx INSEL[1:0] (UDB
CFG15 register) configuration bits is still valid.

The FIFO0 LVL and FIFO1 LVL bits control the level at
which the 4-byte FIFO asserts bus status (when the bus is
either reading or writing to the FIFO) to be asserted. The
meaning of FIFO bus status depends on the configured
direction, as shown in Table 16-5.

FIFO Asynchronous Operation

Figure 16-13 illustrates the concept of asynchronous FIFO
operation. As an example, assume F0 is set for input mode
and F1 is set for output mode, which is a typical configura-
tion for TX and RX registers.

On the TX side, the datapath state machine uses "empty" to
determine if there are any bytes available to consume.
Empty is set synchronously to the DP state machine, but is
cleared asynchronously due to a bus write. When cleared,
the status is synchronized back to the DP state machine.

On the RX side, the datapath state machine uses “full” to

determine whether there is a space left to write to the FIFO.
Full is set synchronously to the DP state machine, but is
cleared asynchronously due to a bus read. When cleared,
the status is synchronized back to the DP state machine.

A single FIFO ASYNCH bit of the UDB CFG16 register is
used to enable this synchronization method; when set it
applies to both FIFOs. It is only applied to the block status,
as it is assumed that bus status is naturally synchronized by
the interrupt process.

capxi (chaining in)
capx (chaining out)

read ax

Chain X

FIFO Cap

fx_write

fx_ld

HFCLK

(FIFO FAST)

FIFO EDGE

0

1

Table 16-5. FIFO Level Control Bits in UDB ACTL Register

FIFO
xLVL

Input Mode
(Bus is Writing FIFO)

Output Mode
 (Bus is Reading FIFO)

0
Not Full

At least 1 byte can be written

Not Empty

At least 1 byte can be read

1

At least Half Empty

At least 2 bytes can be writ-
ten

At least Half Full

At least 2 bytes can be read

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B 151

Universal Digital Blocks (UDB)

Figure 16-13. FIFO Asynchronous Operation

FIFO Overflow Operation

Use FIFO status signaling to safely implement both internal
(datapath) and external (CPU) reads and writes. There is no
built-in protection from underflow and overflow conditions. If
the FIFO is full and subsequent writes occur (overflow), the
new data overwrites the front of the FIFO (the data currently
being output, the next data to read). If the FIFO is empty and
subsequent reads occur (underflow), the read value is unde-
fined. FIFO pointers remain accurate regardless of under-
flow and overflow.

FIFO Clock Inversion Option

Each FIFO has a control bit called Fx CK INV in the UDB
CFG16 register that controls the polarity of the FIFO clock,
with respect to the polarity of the DP clock. By default, the
FIFO operates at the same polarity as the DP clock. When
this bit is set, the FIFO operates at the opposite polarity as
the DP clock. This provides support for “both clock edge”
communication protocols, such as SPI.

FIFO Dynamic Control

Normally, the FIFOs are configured statically in either input
or output mode. As an alternative, each FIFO can be config-
ured into a mode where the direction is controlled dynami-
cally, that is, by routed signals. One configuration bit per
FIFO (Fx DYN bit in the UDB CFG17 register) enables the
mode. Figure 16-14 shows the configurations available in
dynamic FIFO mode.

Figure 16-14. FIFO Dynamic Mode

In internal access mode, the datapath can read and write
the FIFO. In this configuration, the Fx INSEL bits must be
configured to select the source for the FIFO writes. Fx
INSEL = 00 (CPU bus source) is invalid in this mode; they
can only be 01, 10, or 11 (A0, A1, or ALU). Note that the
only read access is to the associated accumulator; the data
register destination is not available in this mode.

In external access mode, the CPU can both read and write
the FIFO. The configuration between internal and external
access is dynamically switchable using datapath routing sig-
nals. The datapath input signals d0_load and d1_load are
used for this control. Note that in the dynamic control mode,
d0_load and d1_load are not available for their normal use
in loading the D0/D1 registers from F0/F1. The dx_load sig-
nals can be driven by any routed signal, including constants.

In one usage example, starting with external access

System Bus

F0 (TX)

F1 (RX)

System Bus

Datapath Process
(Asynch)

blk_stat

Synch to
DP

blk_stat

Synch to
DP

empty

full

set

DP clk

d q

async

1

0 Empty to
DP state
machine

empty

set

DP clk

d q

async

1

0 Full to
DP state
machine

full

Asynchronously cleared
by bus write,

sycnhyronously set by
DP read

Asynchronously cleared
by bus read,

sycnhyronously set by
DP write

FIFO Fx

Ax

Internal Access
(Fx DYN = 1, dx_load = 0)

A
0

A
1

A
L

U

UDB Local Data Bus

FIFO Fx

UDB Local Data Bus

External Access
(Fx DYN = 1, dx_load = 1)

INSEL

152 PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

Universal Digital Blocks (UDB)

(dx_load == 1), the CPU can write one or more bytes of data
to the FIFO. Then toggling to internal access (dx_load == 0),
the datapath can perform operations on the data. Then tog-
gling back to external access, the CPU can read the result of
the computation.

Because the Fx INSEL must always be set to 01, 10, or 11
(A0, A1, or ALU), which is “output mode” in normal opera-
tion, the FIFO status signals have the following definitions
(also dependent on Fx LVL control).

Because the datapath and CPU may both write and read the
FIFO, these signals are no longer considered “block” and
“bus” status. The blk_stat signal is used for write status and
the bus_stat signal is used for read status.

16.2.2.3 FIFO Status

There are four FIFO status signals, two for each FIFO:
fifo0_bus_stat, fifo0_blk_stat, fifo1_bus_stat, and
fifo1_blk_stat. The meaning of these signals depends on the
direction of the given FIFO, which is determined by static
configuration.

16.2.2.4 Datapath ALU

The ALU core consists of three independent 8-bit program-
mable functions, which include an arithmetic/logic unit, a
shifter unit, and a mask unit. See the UDB datapath archi-
tecture block diagram (Figure 16-6) for more details.

Arithmetic and Logic Operation

The ALU functions, which are configured dynamically by the
configuration RAM, are shown in Table 16-7.

srca = ‘A’ input source to the ALU, srcb = ‘B’ input source to
the ALU. See Figure 16-6.

Carry In

The carry in is used in arithmetic operations. Table 16-8

shows the default carry in value for certain functions.

In addition to this default arithmetic mode for carry opera-
tion, there are three additional carry options. The CI SELA
and CI SELB configuration bits in the CFG13 register deter-
mine the carry in for a given cycle. Dynamic configuration
RAM selects either the A or B configuration on a cycle-by-
cycle basis. The options are defined in Table 16-9.

When a routed carry is used, the meaning with respect to
each arithmetic function is shown in Table 16-10. Note that
in the case of the decrement and subtract functions, the
carry is active low (inverted).

Carry Out

The carry out is a selectable datapath output and is derived
from the currently defined MSB position, which is statically
programmable. This value is also chained to the next most
significant block as an optional carry in. Note that in the case

Table 16-6. FIFO Status

Status Signal Meaning Fx LVL = 0 Fx LVL = 1

fx_blk_stat Write Status FIFO full FIFO full

fx_bus_stat Read Status FIFO not empty At least half full

Table 16-7. ALU Functions in UDB DCFG Register

Func[2:0] Function Operation

000 PASS srca

001 INC ++srca

010 DEC --srca

011 ADD srca +srcb

100 SUB srca – srcb

101 XOR srca ^ srcb

110 AND srca and srcb

111 OR srca | srcb

Table 16-8. Carry In Functions

Function Operation Default Carry In Implementation

INC ++srca srca + 00h + ci, where ci is forced to 1

DEC --srca srca + ffh + ci, where ci is forced to 0

ADD srca + srcb srca + srcb + ci, where ci is forced to 0

SUB srca – srcb srca + ~srcb + ci, where ci is forced to 1

Table 16-9. Additional Carry In Functions in UDB CFG13
Register

CI SEL A
CI SEL B

Carry
Mode

Description

00 Default
Default arithmetic mode as described in
Table 16-8.

01 Registered

Carry Flag, result of the carry from the pre-
vious cycle. This mode is used to imple-
ment add with carry and subtract with
borrow operations. It can be used in suc-
cessive cycles to emulate a double preci-
sion operation.

10 Routed
Carry is generated elsewhere and routed to
this input. This mode can be used to imple-
ment controllable counters.

11 Chained

Carry is chained from the previous data-
path. This mode can be used to implement
single cycle operations of higher precision
involving two or more datapaths.

Table 16-10. Routed Carry In Functions

Function
Carry In
Polarity

Carry In Active Carry In Inactive

INC True ++srca srca

DEC Inverted --srca srca

ADD True (srca + srcb) + 1 srca + srcb

SUB Inverted (srca – srcb) – 1 (srca – srcb)

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B 153

Universal Digital Blocks (UDB)

of decrement and subtract functions, the carry out is
inverted.

Carry Structure

Figure 16-15 shows the options for carry in, and for MSB
selection for carry out generation. The registered carry out
value may be selected as the carry in for a subsequent arith-
metic operation. This feature can be used to implement
higher precision functions in multiple cycles.

Figure 16-15. Carry Operation

Shift Operation

The shift operation occurs independent of the ALU opera-
tion, according to Table 16-12.

A shift out value is available as a datapath output. Both shift
out right (sor) and shift out left (sol_msb) share that output
selection. A static configuration bit (SHIFT SEL in the UDB
CFG15 register) determines which shift output is used as a
datapath output. When no shift is occurring, the sor and
sol_msb signal is defined as the LSB or MSB of the ALU
function, respectively.

The SI SELA and SI SELB configuration bits determine the
shift in data for a given operation. Dynamic configuration
RAM selects the A or B configuration on a cycle-by-cycle
basis. Shift in data is only valid for left and right shift; it is not
used for pass and nibble swap. Table 16-13 shows the
selections and usage that apply to both left and right shift
directions.

The shift out left data comes from the currently defined MSB
position (MSB_EN and MSB_SEL bits in the CFG14 regis-
ter), and the data that is shifted in from the left (in a shift
right operation) goes into the currently defined MSB posi-
tion. Both shift out data (left or right) are registered and can
be used in a subsequent cycle. This feature can be used to
implement a higher precision shift in multiple cycles.

Table 16-11. Carry Out Functions

Function
Carry Out
Polarity

Carry Out Active
Carry Out
Inactive

INC True ++srca == 0 srca

DEC Inverted --srca == –1 srca

ADD True srca + srcb > 255 srca + srcb

SUB Inverted srca – srcb < 0 (srca – srcb)

co_msb
(to DP output mux)

ci

Selected MSB

Arithmetic ALU Function
(inc, dec, add, sub)

Default function value

Chained (from prev datapath)

Routed (from interconnect)

Registered (from co_msb_reg)

ALU
Bit 0

ALU
Bit 1

ALU
Bit 2

ALU
Bit 3

ALU
Bit 4

ALU
Bit 5

ALU
Bit 6

ALU
Bit 7

co_msb_reg

Table 16-12. Shift Operation Functions in UDB DCFG
Register

Shift[1:0] Function

00 Pass

01 Shift Left

10 Shift Right

11 Nibble Swap

Table 16-13. Shift In Functions in UDB CFG15 Register

SI SEL A
SI SEL B

Shift In
Source

Description

00
Default/Arith-
metic

The default input is the value of the
DEF SI configuration bit (fixed 1 or
0). However, if the MSB SI bit is set,
then the default input is the currently
defined MSB (for right shift only).

01 Registered

The shift in value is driven by the cur-
rent registered shift out value (from
the previous cycle). The shift left
operation uses the last shift out left
value. The shift right operation uses
the last shift out right value.

10 Routed
Shift in is selected from the routing
channel (the SI input).

11 Chained

Shift in left is routed from the right
datapath neighbor and shift in right is
routed from the left datapath neigh-
bor.

154 PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

Universal Digital Blocks (UDB)

Figure 16-16. Shift Operation

Note that the bits that are isolated by the MSB selection are
still shifted. In the example shown, bit 7 still shifts in the sil
value on a right shift and bit 5 shifts in bit 4 on a left shift.
The shift out either right or left from the isolated bits is lost.

ALU Masking Operation

An 8-bit mask register (AMASK) in the UDB static configura-
tion register space (CFG9) defines the masking operation. In
this operation, the output of the ALU is masked (ANDed)
with the value in the mask register. A typical use for the ALU
mask function is to implement free-running timers and coun-

ters in power of two resolutions.

16.2.2.5 Datapath Inputs and Multiplexing

The datapath has a total of nine inputs, as shown in
Table 16-14, including six inputs from the channel routing.
These consist of the configuration RAM address, FIFO and
data register load control signals, and the data inputs shift in
and carry in.

As shown in Figure 16-17, each input has a 6-to-1 multiplexer, therefore, all inputs are permutable. Inputs are handled in one
of two ways, either level sensitive or edge sensitive. RAM address, shift in and data in values are level sensitive; FIFO and
data register load signals are edge sensitive.

3 2 1 07 6 5 4

shift in left (sil)

shift out left (sol_msb)
(to DP output mux) shift in right (sir)

shift out right (sor)
(to DP output mux)

Selected MSB

Shift right or shift left

Default (tie value)

Registered (sor_reg)

Chained (from next Datapath)

Routed (from interconnect)

Default (tie value)

Chained (from prev Datapath)

Routed (from interconnect)

Registered (from sol_msb_reg)

sor_reg

sol_msb_reg

sil

Select default value or
arithmetic shift

Table 16-14. Datapath Inputs

Input Description

RAD2

RAD1

RAD0

Asynchronous dynamic configuration RAM address. There are eight 16-bit words, which are user-programmable. Each
word contains the datapath control bits for the current cycle. Sequences of instructions can be controlled by these address
inputs.

F0 LD

F1 LD

When asserted in a given cycle, the selected FIFO is loaded with data from one of the A0 or A1 accumulators or from the
output of the ALU. The source is selected by the Fx INSEL[1:0] configuration bits. This input is edge sensitive. It is sampled
at the datapath clock; when a '0' to '1' transition is detected, a load occurs at the subsequent clock edge.

D0 LD

D1 LD

When asserted in a given cycle, the Dx register is loaded from associated FIFO Fx. This input is edge sensitive. It is sam-
pled at the datapath clock; when a '0' to '1' transition is detected, a load occurs at the subsequent clock edge.

SI This is a data input value that can be used for either shift in left or shift in right.

CI This is the carry in value used when the carry in select control is set to "routed carry."

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B 155

Universal Digital Blocks (UDB)

Figure 16-17. Datapath Input Selection

16.2.2.6 CRC/PRS Support

The datapath can support cyclic redundancy checking
(CRC) and pseudo random sequence (PRS) generation.
Chaining signals are routed between datapath blocks to
support CRC/PRS bit lengths of longer than eight bits.

The most significant bit (MSB) of the most significant block
in the CRC/PRS computation is selected and routed (and
chained across blocks) to the least significant block. The
MSB is then XORed with the data input (SI data) to provide
the feedback (FB) signal. The FB signal is then routed (and
chained across blocks) to the most significant block. This
feedback value is used in all blocks to gate the XOR of the
polynomial (from the Data0 or Data1 register) with the cur-
rent accumulator value.

Figure 16-18 shows the structural configuration for the CRC
operation. The PRS configuration is identical except that the
shift in (SI) is tied to '0'. In the PRS configuration, D0 or D1
contain the polynomial value, while A0 or A1 contain the ini-
tial (seed) value and the CRC residual value at the end of
the computation.

To enable CRC operation, the CFB_EN bit in the dynamic
configuration RAM must be set to '1'. This enables the AND
of SRCB ALU input with the CRC feedback signal. When set
to zero, the feedback signal is driven to '1', which allows for

normal arithmetic operation. Dynamic control of this bit on a
cycle-by-cycle basis gives the capability to interleave a
CRC/PRS operation with other arithmetic operations.

Figure 16-18. CRC Functional Structure

CRC/PRS Chaining

Figure 16-19 illustrates an example of CRC/PRS chaining
across three UDBs. This scenario can support a 17- to 24-
bit operation. The chaining control bits are set according to
the position of the datapath in the chain as shown in the fig-
ure.

Figure 16-19. CRC/PRS Chaining Configuration

The CRC/PRS feedback signal (cfbo, cfbi) is chained as fol-
lows:

■ If a given block is the least significant block, then the
feedback signal is generated in that block from the built-
in logic that takes the shift in from the right (sir) and
XORs it with the MSB signal. (For PRS, the "sir" signal is
tied to '0'.)

■ If a given block is not the least significant block, the
CHAIN FB configuration bit must be set and the feed-
back is chained from the previous block in the chain.

The CRC/PRS MSB signal (cmsbo, cmsbi) is chained as fol-
lows:

■ If a given block is the most significant block, the MSB bit
(according to the polynomial selected) is configured
using the MSB_SEL configuration bits in the UDB
CFG14 register.

■ If a given block is not the most significant block, the
CHAIN CMSB configuration bit in the UDB CFG14 regis-
ter must be set and the MSB signal is chained from the
next block in the chain.

{0, dp_in[5:0], 0} rad0
(similar for rad1, rad2, si, ci)

CFGx
RAD0 MUX[2:0]

f0_ld
(similar for f1_ld, d0_ld, d1_ld)

CFGx
F0 LD MUX[2:0]

{0, dp_in[5:0], 0}

These inputs are
edge sensitive

SI
(shift in)

D0/D1
(POLY)

A0/A1
(CRC)

ALU
(XOR)

SHIFTER
(LEFT)

MSB
(most significant bit) FB

(feedback)

srcasrcb Tie input to
zero for PRS
operation

CHAIN MSB = 1

CHAIN FB = 1CHAIN FB = 1

UDB 1

cmsbi

cfbo

cmsbo

cfbi

cmsbi

cfbo

cmsbo

cfbi
UDB 0

CHAIN MSB = 1

UDB 2

cmsbi

cfbo

cmsbo

cfbi

Set msb_sel

sir CRC data in

156 PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

Universal Digital Blocks (UDB)

CRC/PRS Polynomial Specification

As an example of how to configure the polynomial for pro-
gramming into the associated D0/D1 register, consider the
CCITT CRC-16 polynomial, which is defined as x16 + x12

+x5 + 1. The method for deriving the data format from the
polynomial is shown in Figure 16-20.

The X0 term is inherently always '1' and therefore does not
need to be programmed. For each of the remaining terms in

the polynomial, a '1' is set in the appropriate position in the
alignment shown.

Note This polynomial format is slightly different from the for-
mat normally specified in Hex. For example, the CCITT
CRC16 polynomial is typically denoted as 1021H. To con-
vert to the format required for datapath operation, shift right
by one and add a '1' in the MSB bit. In this case, the correct
polynomial value to load into the D0 or D1 register is 8810H.

Figure 16-20. CCITT CRC16 Polynomial Format

Example CRC/PRS Configuration

The following is a summary of CRC/PRS configuration
requirements, assuming that D0 is the polynomial and the
CRC/PRS is computed in A0:

1. Select a suitable polynomial and write it into D0.

2. Select a suitable seed value (for example, all zeros for
CRC, all ones for PRS) and write it into A0.

3. Configure chaining if necessary.

4. Select the MSB position as defined in the polynomial
from the MSB_SEL static configuration register bits and
set the MSB_EN register bit in the UDB CFG14 register.

5. Configure the dynamic configuration RAM word fields:

a. Select D0 as the ALU "SRCB" (ALU B Input Source)

b. Select A0 as the ALU "SRCA" (ALU A Input Source)

c. Select "XOR" for the ALU function

d. Select "SHIFT LEFT" for the SHIFT function

e. Select "CFB_EN" to enable the support for CRC/
PRS

f. Select ALU as the A0 write source

If a CRC operation, configure "shift in right" for input data
from routing and supply input on each clock. If a PRS opera-
tion, tie "shift in right" to '0'.

Clocking the UDB with this configuration generates the
required CRC or outputs the MSB, which may be output to
the routing for the PRS sequence.

External CRC/PRS Mode

A static configuration bit may be set (EXT CRCPRS in the
UDB CFG16 register) to enable support for external compu-
tation of a CRC or PRS. As shown in Figure 16-21, compu-
tation of the CRC feedback is done in a PLD block. When
the bit is set, the CRC feedback signal is driven directly from
the CI (Carry In) datapath input selection mux, bypassing
the internal computation. The figure shows a simple configu-

ration that supports up to an 8-bit CRC or PRS. Normally the
built-in circuitry is used, but this feature gives the capability
for more elaborate configurations, such as up to a 16-bit
CRC/PRS function in one UDB using time division multiplex-
ing.

In this mode, the dynamic configuration RAM bit CFB_EN in
the UDB DCFG0 register still controls whether the CRC
feedback signal is ANDed with the SRCB ALU input. There-
fore, as with the built-in CRC/PRS operation, the function
can be interleaved with other functions if required.

0000100000010001

X0X1X2X3X4X5X6X7X8X9X10X11X12X13X14X15X16

CCITT 16-Bit Polynomial is 0x8810

X16 X12 X5 1+ + +

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B 157

Universal Digital Blocks (UDB)

Figure 16-21. External CRC/PRS Mode

16.2.2.7 Datapath Outputs and Multiplexing

Conditions are generated from the registered accumulator values, ALU outputs, and FIFO status. These conditions can be
driven to the digital routing for use in other UDB blocks, for use as interrupts, or to I/O pins. The 16 possible conditions are
shown in Table 16-15.

There are a total of six datapath outputs. As shown in Figure 16-22, each output has a 16-1 multiplexer that allows any of
these 16 signals to be routed to any of the datapath outputs.

Table 16-15. Datapath Condition Generation

Name Condition Chain Description

ce0 Compare Equal Y A0 == D0

cl0 Compare Less Than Y A0 < D0

z0 Zero Detect Y A0 == 00h

ff0 Ones Detect Y A0 == FFh

ce1 Compare Equal Y A1 or A0 == D1 or A0 (dynamic selection)

cl1 Compare Less Than Y A1 or A0 < D1 or A0 (dynamic selection)

z1 Zero Detect Y A1 == 00h

ff1 Ones Detect Y A1 == FFh

ov_msb Overflow N Carry(msb) ^ Carry(msb–1)

co_msb Carry Out Y Carry out of MSB defined bit

cmsb CRC MSB Y MSB of CRC/PRS function

So Shift Out Y Selection of shift output

f0_blk_stat FIFO0 Block Status N Definition depends on FIFO configuration

f1_blk_stat FIFO1 Block Status N Definition depends on FIFO configuration

f0_bus_stat FIFO0 Bus Status N Definition depends on FIFO configuration

f1_bus_stat FIFO1 Bus Status N Definition depends on FIFO configuration

SI
(shift in)

D0/D1
(POLY)

A0/A1
(CRC)

ALU
(XOR)

SHIFTER
(LEFT)

MSB
(Most Significant Bit)

FB
(feedback)

srcasrcb

Tie shift in to
zero for PRS

operation

CI Mux

PLD

D
P

Inputs

RoutingRouting

SI Mux

When the
EXT_CRCPRS bit is
set, the CI selection
drives the CRC
feedback line.

158 PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

Universal Digital Blocks (UDB)

Figure 16-22. Output Mux Connections

Compares

There are two compares, one of which has fixed sources
(Compare 0) and the other has dynamically selectable
sources (Compare 1). Each compare has an 8-bit statically
programmed mask register, which enables the compare to
occur in a specified bit field. By default, the masking is off
(all bits are compared) and must be enabled.

Comparator 1 inputs are dynamically configurable. As
shown in Table 16-16, there are four options for Comparator
1, which applies to both the "less than" and the "equal" con-
ditions. The CMP SELA and CMP SELB configuration bits in
the UDB CFG12 register determine the possible compare
configurations. A dynamic configuration RAM bit CMP SEL
in the UDB DCFG0 register selects one of the A or B config-
urations on a cycle-by-cycle basis.

Compare 0 and Compare 1 are independently chainable to
the conditions generated in the previous datapath (in
addressing order). The decision to chain compares is stati-
cally specified by CHAIN0 and CHAIN1 bits of the UDB
CFG14 registers. Figure 16-23 illustrates compare equal
chaining, which is just an ANDing of the compare equal in
this block with the chained input from the previous block.

Figure 16-23. Compare Equal Chaining

Figure 16-24 illustrates compare less than chaining. In this
case, the “less than” is formed by the compare less than out-
put in this block, which is unconditional. This is ORed with
the condition where this block is equal, and the chained
input from the previous block is asserted as less than.

Figure 16-24. Compare Less Than Chaining

All Zeros and All Ones Detect

Each accumulator has dedicated all zeros detect and all
ones detect. These conditions are statically chainable as
specified in the UDB configuration registers. The decision to
chain these conditions is statically specified in the UDB con-
figuration registers. Chaining of zero detect is the same con-
cept as the compare equal. Successive chained data is
ANDed if the chaining is enabled.

Overflow

Overflow is defined as the XOR of the carry into the MSB
and the carry out of the MSB. The computation is done on
the currently defined MSB as specified by the MSB_SEL
bits. This condition is not chainable, however the computa-
tion is valid when done in the most significant datapath of a
multi-precision function as long as the carry is chained
between blocks.

16.2.2.8 Datapath Parallel Inputs and Outputs

As shown in Figure 16-25, the datapath Parallel In (PI) and
Parallel Out (PO) signals give limited capability to bring
routed data directly into and out of the Datapath. Parallel
Out signals are always available for routing as the ALU asrc
selection between A0 and A1.

Table 16-16. Compare Configuration

CMP SEL A
CMP SEL B

Comparator 1 Compare Configuration

00 A1 Compare to D1

01 A1 Compare to A0

10 A0 Compare to D1

11 A0 Compare to A0

1
4

2
1

3
1

2
1

1
3

4
5

6
7

8
9

1
0

1

O
utput M

u
x

 (6
 - 1

6
 to

 1)

0ce0

cl0

z0

ff0

ce1

cl1

z1

ff1

ov_msb

co_msb

cmsb
sor

sol_msb
f0_blk_stat

f1_blk_stat

dp_out[5:0]
6

Output Mux

1
5

f0_bus_stat

f1_bus_stat

CFG14
CCHAIN0

Compare Equal

ce0i
(from chaining)

ce0
(to routing

and chaining)

CFG14
CCHAIN0

Compare
Less Than

cl0i
(from chaining)

cl0
(to routing

and chaining)

Compare
Equal

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B 159

Universal Digital Blocks (UDB)

Figure 16-25. Datapath Parallel In/Out

Parallel In needs to be selected for input to the ALU. The
two options available are static operation or dynamic opera-
tion. For static operation, the PI SEL bit of the UDB CFG15
register forces the ALU asrc to be PI. The PI DYN bit of the
UDB CFG15 register is used to enable the PI dynamic oper-
ation. When it is enabled, and assuming the PI SEL is 0, the

PI multiplexer may then be controlled by the CFB_EN (UDB
DCFG0 register) dynamic control bit. The primary function of
CFB_EN is to enable PRS/CRC functionality.

16.2.2.9 Datapath Chaining

Each datapath block contains an 8-bit ALU, which is
designed to chain carries, shifted data, capture triggers, and
conditional signals to the nearest neighbor datapaths, to
create higher precision arithmetic functions and shifters.
These chaining signals, which are dedicated signals, allow
single-cycle 16-, 24- and 32-bit functions to be efficiently
implemented without the timing uncertainty of channel rout-
ing resources. In addition, the capture chaining supports the
ability to perform an atomic read of the accumulators in
chained blocks. As shown in Figure 16-26, all generated
conditional and capture signals chain in the direction of least
significant to most significant blocks. Shift left also chains
from least to most significant. Shift right chains from most to
least significant. The CRC/PRS chaining signal for feedback
chains least to most significant; the MSB output chains from
most to least significant.

Figure 16-26. Datapath Chaining Flow

16.2.2.10 Dynamic Configuration RAM

Each datapath contains a 16 bit-by-8 word dynamic configu-
ration RAM, which is shown in Figure 16-27. The purpose of
this RAM is to control the datapath configuration bits on a
cycle-by-cycle basis, based on the clock selected for that
datapath. This RAM has synchronous read and write ports
for purposes of loading the configuration via the system bus.

An additional asynchronous read port is provided as a fast
path to output these 16-bit words as control bits to the data-
path. The asynchronous address inputs are selected from
datapath inputs and can be generated from any of the possi-
ble signals on the channel routing, including I/O pins, PLD
outputs, control block outputs, or other datapath outputs.
The primary purpose of the asynchronous read path is to
provide a fast single-cycle decode of datapath control bits.

Alu

PI[7:0] A1[7:0]A0[7:0]

ASRC[7:0]

PI SEL
(static config bit in CFG15 register)

PI DYN
(static config bit in CFG15 register)

CFB_EN

01

PO[7:0]

UDB1

CE0

CL0

Z0

FF0

CE1

CL1

Z1

FF1

CO_MSB

SOL_MSB

SIL

CE0i

CL0i

Z0i

FF0i

CE1i

CL1i

Z1i

FF1i

CI

SIR

SOR

CMSBI CMSBO

UDB0

CE0

CL0

Z0

FF0

CE1

CL1

Z1

FF1

CO_MSB

SOL_MSB

SIL

CE0i

CL0i

Z0i

FF0i

CE1i

CL1i

Z1i

FF1i

CI

SIR

SOR

CMSBI CMSBO

UDB2

CE0

CL0

Z0

FF0

CE1

CL1

Z1

FF1

CO_MSB

SOL_MSB

SIL

CE0i

CL0i

Z0i

FF0i

CE1i

CL1i

Z1i

FF1i

CI

SIR

SOR

CMSBI CMSBO

0

0

0

0

0

0

0

0

0

0

0

0

CFBI CFBI CFBICFBOCFBOCFBO 0

CAP0

CAP1

CAP0i

CAP1i

CAP0

CAP1

CAP0i

CAP1i

CAP0

CAP1

CAP0i

CAP1i

0

0

160 PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

Universal Digital Blocks (UDB)

Figure 16-27. Configuration RAM I/O

The fields of this dynamic configuration RAM word are shown here. A description of the usage of each field follows.

16.2.3 Status and Control Module

Figure 16-28 shows a high-level view of the Status and Con-
trol module. The Control register drives into the routing to
provide firmware control inputs to UDB operation. The Sta-
tus register read from routing provides firmware a method of
monitoring the state of UDB operation.

Figure 16-29 shows a more detailed view of the Status and
Control module. The primary purpose of this block is to coor-
dinate CPU firmware interaction with internal UDB opera-
tion. However, due to its rich connectivity to the routing
matrix, this block may be configured to perform other func-
tions.

Register Address 15 14 13 12 11 10 9 8

CFGRAM
61h - 6Fh

(odd)
FUNC[2:0] SRCA SRCB[1:0] SHIFT[1:0]

Register Address 7 6 5 4 3 2 1 0

CFGRAM
60h - 6Eh

(even)
A0 WR

SRC[1:0]

A1 WR

SRC[1:0]
CFB EN CI SEL SI SEL CMP SEL

16 Bit-by-8 Word RAM
Array

R
ead/W

rite

A
ddress

D
ecoder

bus_addr
[2:0]

W
r C

trl

wrl

wrh
R

ea
d

 O
nl

y

A
dd

re
ss

 D
ec

od
er

rad[2:0]

Datapath Control
Inputs bus_data[15:0]

R/W
Read

16

Config RAM
dyn_cfg_ram

[15:0]

16

RO
Read

16

rd
dpram

U
D

B
 Local B

us

Table 16-17. Dynamic Configuration Quick Reference

Field Bits Parameter Values

FUNC[2:0] 3 ALU Function

000 PASS

001 INC SRCA

010 DEC SRCA

011 ADD

100 SUB

101 XOR

110 AND

111 OR

SRCA 1 ALU A Input Source
0 A0

1 A1

SRCB 2 ALU B Input Source

00 D0

01 D1

10 A0

11 A1

SHIFT[1:0] 2 SHIFT Function

00 PASS

01 Left Shift

10 Right Shift

11 Nibble Swap

A0 WR

SRC[1:0]
2 A0 Write Source

00 None

01 ALU

10 D0

11 F0

A1 WR

SRC[1:0]
2 A1 Write Source

00 None

01 ALU

10 D1

11 F1

CFB EN 1 CRC Feedback Enable
0 Enable

1 Disable

CI SEL 1
Carry In Configuration
Select

0 ConfigA

1 ConfigBa

SI SEL 1
Shift In Configuration
Select

0 ConfigA

1 ConfigBa

CMP SEL 1
Compare Configuration
Select

0 ConfigA

1 ConfigBa

a. For CI, SI, and CMP, the RAM fields select between two predefined stat-
ic settings. See Static Register Configuration.

Table 16-17. Dynamic Configuration Quick Reference

Field Bits Parameter Values

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B 161

Universal Digital Blocks (UDB)

Figure 16-28. Status and Control Registers

Figure 16-29. Status and Control Module

Modes of operation include:

■ Status Input – The state of routing signals can be input and captured as status and read by the CPU.

■ Control Output – The CPU can write to the control register to drive the state of the routing.

■ Parallel Input – To datapath parallel input.

■ Parallel Output – From datapath parallel output.

■ Counter Mode – In this mode, the control register operates as a 7-bit down counter with programmable period and auto-
matic reload. Routing inputs can be configured to control both the enable and reload of the counter. When this mode is
enabled, control register operation is not available.

■ Sync Mode – In this mode, the status register operates as a 4-bit double synchronizer. When this mode is enabled, status
register operation is not available.

Routing Channel

8-Bit Status Register
(Read Only)

8-Bit Control Register
(Write/Read)

System Bus

Interrupt
Gen

sc_out[7:0]

From
Datapath
Parallel
Output

(po[7:0])

To
Datapath
Parallel
Input

(pi[7:0])

8

8

sc_io_out[2:0]

INT

{sc_io_in[3:0],sc_in[3:0]}

7-Bit
Down Count

7-Bit
Period Register
(same as Mask)

8-Bit
Status Register

7-Bit
Mask Register

(same as Period)

8-Bit
Control Register

Status and Control Module

Horizontal Channel Routing

8

8

EN/LD CTL

7
TC CNT

8
CFGx

SC OUT
CTL[1:0]

CFGx
INT MD

8

3

4-Bit Sync

4

CFGx
SYNC MD

8 8

sc_io_out[3]

sc_in[3:0]

162 PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

Universal Digital Blocks (UDB)

16.2.3.1 Status and Control Mode

When operating in status and control mode, this module functions as a status register, interrupt mask register, and control
register in the configuration shown in Figure 16-30.

Figure 16-30. Status and Control Operation

Status Register Operation

One 8-bit, read-only status register is available for each
UDB. Inputs to this register come from any signal in the digi-
tal routing fabric. The status register is nonretention; it loses
its state across sleep intervals and is reset to 0x00 on
wakeup. Each bit can be independently programmed to
operate in one of two ways, as shown in Table 16-18.

An important feature of the status register clearing operation
is to note that the clear of status is only applied to the bits
that are set. This allows other bits that are not set to con-
tinue to capture status, so that a coherent view of the pro-
cess can be maintained.

Transparent Status Read

By default, a CPU read of this register transparently reads
the state of the associated routing. This mode can be used
for a transient state that is computed and registered inter-
nally in the UDB.

Sticky Status, with Clear on Read

In this mode, the status register inputs are sampled on each
cycle of the status and control clock. If the signal is high in a
given sample, it is captured in the status bit and remains
high, regardless of the subsequent state of the input. When
the CPU reads the status register the bit is cleared. The sta-
tus register clearing is independent of mode and occurs
even if the UDB clock is disabled; it is based on the HFCLK
and occurs as part of the read operation.

Status Latching During Read

Figure 16-31 shows the structure of the status read logic.
The sticky status register is followed by a latch, which
latches the status register data and holds it stable during the
duration of the read cycle, regardless of the number of wait
states in a given read.

8-Bit Status

Register

sc_out[7:0]

7-Bit Mask

Register

Read
Write

Reset

{sc_io_in[3:0],sc_in[3:0]

8

Read
Only

(Routed Reset

from Reset and Clock
Control Block

8-Bit Control

Register

Read
Write

8

System Bus

sc_io_out[3]

7 7

7

00: Read Transparently
01: Sticky, Clear on Read

CFGx
STAT MD[7:0]

CFGx
INT MD

ACTL
INT EN

SC OUT CTL bits must
be set to select Control
register bits for output

CFGx
SC OUT
CTL[1:0]

INT

Table 16-18. Status Register Mode Selection in UDB
CFG20 Register

STAT MD Description

0
Transparent read. A read returns the current value
of the routed signal

1
Sticky, clear on read. A high on the input is sampled
and captured. It is cleared when the register is read.

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B 163

Universal Digital Blocks (UDB)

Figure 16-31. Status Read Logic

Interrupt Generation

In most functions, interrupt generation is tied to the setting of
status bits. As shown in Figure 16-31, this feature is built
into the status register logic as the masking and OR reduc-
tion of status. Only the lower seven bits of status input can
be used with the built-in interrupt generation circuitry. The
most significant bit is typically used as the interrupt output
and may be routed to the interrupt controller through the dig-
ital routing. In this configuration, the MSB of the status regis-
ter is read as the state of the interrupt bit.

16.2.3.2 Control Register Operation

One 8-bit control register is available for each UDB. This
operates as a standard read/write register on the system
bus, where the output of these register bits are selectable as
drivers into the digital routing fabric.

The Control register is nonretention; it loses its contents
across sleep intervals and is reset to 0x00 on wakeup.

Control Register Operating Modes

Three modes are available that may be configured on a bit-
by-bit basis. The configuration is controlled by the concate-
nation of the bits of the two 8-bit registers CTL_MD1[7:0]
and CTL_MD0[7:0] of the UDB CFG18 and CFG19 regis-
ters. For example, {CTL_MD1[0],CTL_MD0[0]} controls the
mode for Control Register bit 0, as shown in Table 16-19.

Control Register Direct Mode

The default mode is Direct mode. As shown in Figure 16-32,
when the Control Register is written by the CPU the output
of the control register is driven directly to the routing on that
write cycle.

Figure 16-32. Control Register Direct Mode

Control Register Sync Mode

In Sync mode, as shown in Figure 16-33, the control register
output is driven by a re-sampling register clocked by the cur-
rently selected Status and Control (SC) clock. This allows
the timing of the output to be controlled by the selected SC
clock, rather than the HFCLK.

Figure 16-33. Control Register Sync Mode

Control Register Double Sync Mode

In Double Sync mode, as shown in Figure 16-34, a second
register clocked by the selected SC clock is added after the
re-sampling register. This allows the circuit to perform
robustly when the HFCLK and SC clock are asynchronous.

Figure 16-34. Control Register Double Sync Mode

Control Register Pulse Mode

Pulse mode is similar to Sync mode in that the control bit is
re-sampled by the SC clock; the pulse starts on the first SC
clock cycle following the bus write cycle. The output of the
control bit is asserted for one full SC clock cycle. At the end

Status and
Control Clock

from Routing

UDB Local Bus

D Q

AR

Sticky/!Transparent

0

1

Sticky Status
Register

EN

D Q

Read Latch

Status Register
Read

End of Status
Register Read

Table 16-19. Mode for Control Register Bit 0 in the UDB
CFG18 and CFG19 Registers

CTL MD Description

00 Direct mode

01 Sync mode

10 Double sync mode

11 Pulse mode

HFCLK

Data Bus To
Routing

SC CLKHFCLK

Data Bus
To

Routing

SC CLKHFCLK

Data Bus
To

Routing

SC CLK

164 PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

Universal Digital Blocks (UDB)

of this clock cycle, the control bit is automatically reset.

With this mode of operation, firmware can write a ‘1’ to a
control register bit to generate a pulse. After it is written as a
‘1’, it is read back by firmware as a ‘1’ until the completion of
the pulse, after which it is read back as a ‘0’. The firmware
can then write another ‘1’ to start another pulse. A new pulse
cannot be generated until the previous one is completed.
Therefore, the maximum frequency of pulse generation is
every other SC clock cycle.

Control Register Reset

The control register has two reset modes, controlled by the
EXT RES configuration bit, as shown in Figure 16-35. When
EXT RES is 0 (the default) then in sync or pulse mode the
routed reset input resets the synced output but not the
actual control bit. When EXT RES is 1 then the routed reset
input resets both the control bit and the synced output.

Figure 16-35. Control Register Reset

16.2.3.3 Parallel Input/Output Mode

In this mode, as Figure 16-36 shows, the status and control routing is connected to the datapath parallel in and parallel out
signals. To enable this mode, the SC OUT configuration bits in the UDB CFG22 registers are set to select datapath parallel
out. The parallel input connection is always available, but these routing connections are shared with the status register inputs,
counter control inputs, and the interrupt output.

Figure 16-36. Parallel Input/Output Mode

16.2.3.4 Counter Mode

As shown in Figure 16-37, when the block is in counter
mode, a 7-bit down counter is exposed for use by UDB inter-
nal operation or firmware applications. This counter has the
following features:

■ A 7-bit read/write period register.

■ A 7-bit read/write count register. It can be accessed only
when the counter is disabled.

■ Automatic reload of the period to the count register on
terminal count (0).

■ A firmware control bit in the Auxiliary Control Working
register (ACTL0) called CNT START, to start and stop
the counter. (This is an overriding enable and must be
set for optional routed enable to be operational.)

■ Selectable bits from the routing for optional dynamic
control of the counter enable and load functions:

❐ EN, routed enable to start or stop counting.

❐ LD, routed load signal to force the reload of period.
When this signal is asserted, it overrides a pending
terminal count. It is level sensitive and continues to
load the period while asserted.

SC CLKHFCLK

Data Bus

To
Routing

Bit by Bit
CFG

0

1

EXT RES

Routed Reset

res resStatic configuration
bit

sc_out[7:0]

88

Datapath

po[7:0] pi[7:0]

Datapath
Parallel Out

Datapath
Parallel InSC OUT CTL bits must

be set to select
datapath parallel out bits
for output to routing.

The INT MD and SYNC
MD control bits should
be cleared to enable
SC_IO bits to input mode.

{sc_io_in[3:0], sc_in[3:0]}

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B 165

Universal Digital Blocks (UDB)

■ The 7-bit count may be driven to the routing fabric as
sc_out[6:0].

■ The terminal count may be driven to the routing fabric as
sc_out[7].

■ In default mode, the terminal count is registered. In alter-
nate mode the terminal count is combinational.

■ In default mode, the routed enable, if used, must be
asserted for routed load to operate. In alternate mode
the routed enable and routed load signals operate inde-
pendently.

To enable the counter mode, the SC_OUT_CTL[1:0] bits of
the UDB CFG22 register must be set to counter output. In

this mode the normal operation of the control register is not
available. The status register can still be used for read oper-
ations, but should not be used to generate an interrupt
because the mask register is reused as the counter period
register. The Period register is implemented as a retention
register and maintains its state across sleep intervals. For a
period of N clocks, the period value of N–1 should be
loaded. N = 1 (period of 0) is not supported as a clock divide
value, and results in the terminal count output of a constant
1.The use of SYNC mode depends on whether the dynamic
control inputs (LD/EN) are used. If they are not used, SYNC
mode is unaffected. If they are used, SYNC mode is unavail-
able.

Figure 16-37. Counter Mode

16.2.3.5 Sync Mode

As shown in Figure 16-38, the status register can operate as
a 4-bit double synchronizer, clocked by the current
SC_CLK, when the SYNC MD bit in the UDB CFG22 regis-
ter is set. This mode may be used to implement local syn-
chronization of asynchronous signals, such as GPIO inputs.
When enabled, the signals to be synchronized are selected
from SC_IN[3:0], the outputs are driven to the
SC_IO_OUT[3:0] pins, and SYNC MD automatically puts
the SC_IO pins into output mode. When in this mode, the
normal operation of the status register is not available, and
the status sticky bit mode is forced off, regardless of the
control settings for this mode. The control register is not
affected by the mode. The counter can still be used with lim-
itations. No dynamic inputs (LD/EN) to the counter can be
enabled in this mode.

Figure 16-38. Sync Mode

sc_out[6:0]

7-Bit Period

Register

4

7-Bit Counter

7

Zero
Detect

sc_out[7]

EN

4

LD

0: Reload is only controlled by terminal count
1: Reload is also controlled by routing

CFGx
ROUTE LD

CFGx
ROUTE EN

0: Enable is only controlled by firmware
1: Enable is also controlled by routing

CFGx
LD SEL[1:0]

Terminal
Count
(TC)

RES

CFGx
EN SEL[1:0]

ACTL
CNT START

Routed Reset from
Reset and Clock

Control Block

SC OUT CTL bits must be set
to select the counter output
as the selected output to
routing.

The INT MD and SYNC
MD bits should be
cleared to configure the
SC_IO bits to input mode.

Read
Only*

 System Bus

Read
Write

*Current count value is
only readable when
not enabled.

{sc_io_in[3:0], sc_in[3:0]}

8

[3:0][7:4]

sc_io_out[3:0]

Sync Module (Status Register)

Digital Routing

4

CFGx
SYNC MD

sc_in[3:0]

01234567

4

166 PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

Universal Digital Blocks (UDB)

16.2.3.6 Status and Control Clocking

The status and control registers require a clock selection for
any of the following operating modes:

■ Status register with any bit set to sticky, clear on read
mode.

■ Control register in counter mode.

■ Sync mode.

The clock for this is allocated in the reset and clock control
module. See Reset and Clock Control Module on page 166.

16.2.3.7 Auxiliary Control Register

The read-write Auxiliary Control register is a special register
that controls fixed function hardware in the UDB. This regis-
ter allows CPU to dynamically control the interrupt, FIFO,
and counter operation. The register bits and descriptions are
as follows:

FIFO0 Clear, FIFO1 Clear

The FIFO0 CLR and FIFO1 CLR bits are used to reset the
state of the associated FIFO. When a '1' is written to these
bits, the state of the associated FIFO is cleared. These bits
must be written back to '0' to allow FIFO operation to con-
tinue. When these bits are left asserted, the FIFOs operate
as simple one-byte buffers, without status.

FIFO0 Level, FIFO1 Level

The FIFO0 LVL and FIFO1 LVL bits control the level at
which the 4-byte FIFO asserts bus status (when the bus is
either reading or writing to the FIFO) to be asserted. The
meaning of FIFO bus status depends on the configured
direction, as shown in Table 16-20.

Interrupt Enable

When the status register’s interrupt generation logic is
enabled, the INT EN bit gates the resulting interrupt signal.

Count Start

The CNT START bit may be used to enable and disable the

counter (only valid when the SC_OUT_CTL[1:0] bits are
configured for counter output mode).

16.2.3.8 Status and Control Register
Summary

Table 16-21 summarizes the function of the status and con-
trol registers. Note that the control and mask registers are
shared with the count and period registers and the meaning
of these registers is mode dependent.

16.2.4 Reset and Clock Control Module

The primary function of the reset and clock block is to select
a clock from the available global system clocks or HFCLK
for each of the PLDs, the datapath, and the status and con-
trol block. It also supplies dynamic and firmware-based
resets to the UDB blocks. As shown in Figure 16-39, there
are four clock control blocks, and one reset block. Four
inputs are available for use from the routing matrix
(RC_IN[3:0]). Each clock control block can select a clock
enable source from these routing inputs, and there is also a
multiplexer to select one of the routing inputs to be used as
an external clock source. As shown, the external clock
source selection can be optionally synchronized. There are
a total of six clocks that can be selected for each UDB com-
ponent: four UDB peripheral clocks, HFCLK, and the
selected external clock (ext clk). Any of the routed input sig-
nals (rc_in) can be used as either a level sensitive or edge
sensitive enable. The reset function of this block provides a
routed reset for the PLD blocks and SC counter, and a firm-
ware reset capability to each block to support reconfigura-
tion.

The HFCLK input to the reset and clock control is distinct
from the system HFCLK. This clock is called “hf_clk_app”
because it is gated similar to the other UDB peripheral
clocks and used for UDB applications. The system HFCLK
is only used for I/O access and is automatically gated, per
access. The datapath clock generator produces three
clocks: one for the datapath in general, and one for each of
the FIFOs.

Auxiliary Control Registers

7 6 5 4 3 2 1 0

CNT
START

INT
EN

FIFO1
LVL

FIFO0
LVL

FIFO1
CLR

FIFO0
CLR

Table 16-20. FIFO Level Control Bits

FIFOx
LVL

Input Mode
(Bus is Writing FIFO)

Output Mode
(Bus is Reading FIFO)

0

Not Full

At least 1 byte can be writ-
ten

Not Empty

At least 1 byte can be
read

1

At Least Half Empty

At least 2 bytes can be writ-
ten

At Least Half Full

At least 2 bytes can be
read

Table 16-21. Status, Control Register Function Summary

Mode Control/Count Status/SYNC Mask/Period

Control Control Out Status In or
SYNC

Status Mask

Count Count Out Count Perioda

a. Note that in counter mode, the mask register is operating as a period
register and cannot function as a mask register. Therefore, interrupt out-
put is not available when counter mode is enabled.

Status Control Out or Count
Out

Status In Status Mask

SYNC SYNC NAb

b. Note that in SYNC mode, the status register function is not available, and
therefore, the mask register is unusable. However, it can be used as a
period register for count mode.

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B 167

Universal Digital Blocks (UDB)

Figure 16-39. Reset and Clock Control

16.2.4.1 Clock Control

Figure 16-40 illustrates one instance of the clock selection and enable circuit. Each UDB has four of these circuits: one for
each of the PLD blocks, one for the datapath, and one for the status and control block. The main components of this circuit
are a global clock selection multiplexer, clock inversion, clock enable selection multiplexer, clock enable inversion, and edge
detect logic.

PLD0
Clock

Select/Enable
pld0_clk (to PLD0)rc_in[3:0]

pld1_clk (to PLD1)

dp_clk (to Datapath)

sc_clk (to Status and Control)

cnt_routed_ reset (to SC counter)

sc_reset (firmware/system reset)

hf_clk_app, gclks[7:0]

dp_reset (firmware/system reset)

CFGx
EXT CLK SEL[1:0]

2

global_enable

PLD1
Clock

Select/Enable

DP
Clock

Select/Enable

SC
Clock

Select/Enable

rc_in_gated[3:0]

ext_clk

rc_in_gated[3:0]

sysreset

From channel routing

pld0_reset (firmware/system reset)

pld1_reset (firmware/system reset)

Reset
Select/Enable

mf

CFGx
EXT SYNC

HFCLK

f0_clk (to FIFO0)

f1_clk (to FIFO1)

168 PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

Universal Digital Blocks (UDB)

Figure 16-40. Clock Select/Enable Control

Clock Selection

Four UDB peripheral clocks (see Clocking System chapter
on page 73), gclk[0] to gclk[3], are routed to all UDBs; the
remaining four clock configurations, gclk[4] to gclk[7], are
not supported in the PSoC 4 family of devices. Any of these
clocks may be selected. UDB peripheral clocks are the out-
put of user-selectable clock dividers. Another selection is
HFCLK, which is the highest frequency in the system. Called
“hf_clk_app,” this signal is routed separately from the sys-
tem HFCLK. In addition, an external routing signal can be
selected as a clock input to support direct-clocked functions
such as SPI. Because application functions are mapped to
arbitrary boundaries across UDBs, individual clock selection
for each UDB subcomponent block supports a fine granular-
ity of programming.

Clock Inversion

The selected clock may be optionally inverted. This limits
the maximum frequency of operation due to the existence of
one half cycle timing paths. Simultaneous bus writes and
internal writes (for example writing a new count value while
a counter is counting) are not supported when the internal
clock is inverted and the same frequency as HFCLK. This
limitation affects A0, A1, D0, D1, and the Control register in
counter mode.

Clock Enable Selection

The clock enable signal may be routed to any synchronous
signal and can be selected from any of the four inputs from
the routing matrix that are available to this block.

Clock Enable Inversion

The clock enable signal may be optionally inverted. This fea-
ture allows the clock enable to be generated in any polarity.

Clock Enable Mode

By default, the clock enable is OFF. After configuring the tar-
get block operation, software can set the mode to one of the
following using the EN MODE[1:0] bits of the UDB CFG24
register shown in Figure 16-40.

Clock Enable Usage

The two general usage scenarios for the clock enable are:

Firmware Enable – It is assumed that most functions
require a firmware clock enable to start and stop the func-
tion. Because the boundary of a function mapped into the
UDB array is arbitrary–it may span multiple UDBs and/or
portions of UDBs–there must be a way to enable a given
function atomically. This is typically implemented from a bit
in a control register routed to one or more clock enable
inputs. This scenario also supports the case where applica-
tions require multiple, unrelated blocks to be enabled simul-
taneously.

Emulated Local Clock Generation – This feature allows
local clocks to be generated by UDBs, and distributed to

Latch

CFGx
CK SEL[3:0]

{hf_clk_app,ext_clk, gclk[7:0]}

clk

Clock Select
0000: gclk[0] 0100: gclk[4]
0001: gclk[1] 0101: gclk[5]
0010: gclk[2] 0110: gclk[6]
0011: gclk[3] 0111: gclk[7]
1000: ext_clk
1001: hf_clk_app

CFGx
EN SEL[1:0]

Enable Select
00: rc_in[0]
01: rc_in[1]
10: rc_in[2]
11: rc_in[3]

CFGx
EN INV

2

Enable Invert
0: true
1: inverted

4
Clock Invert
0: true
1: inverted

rc_in_gated[3:0] FF

CFGx
EN MODE[1:0]

Enable Mode
00: off
01: on
10: positive edge
11: level

1 1

0

22

0

1

CFGx
CK INV

2

0

1

0

3

2

Table 16-22. Clock Enable Mode in UDB CFG24 Register

Clock Enable
Mode

Description

OFF Clock is OFF.

ON
Clock is ON. The selected global clock is free run-
ning.

Positive Edge

A gated clock is generated on each positive edge
detect of the clock enable input. Maximum fre-
quency of enable input is the selected global clock
divided by two.

Level
Clocks are generated while the clock enable input
is high ('1').

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B 169

Universal Digital Blocks (UDB)

other UDBs in the array by using a synchronous clock
enable implementation scheme, rather than directly clocking
from one UDB to another. Using the positive edge feature of
the clock enable mode eliminates restrictions on the duty
cycle of the clock enable waveform.

Special FIFO Clocking

The datapath FIFOs have special clocking considerations.
By default, the FIFO clocks follow the same configuration as
the datapath clock. However, the FIFOs have special control
bits that alter the clock configuration:

■ Each FIFO clock can be inverted with respect to the
selected datapath clock polarity.

■ When FIFO FAST mode is set in the UDB CFG16 regis-
ter, the HFCLK overrides the datapath clock selection
normally in use by the FIFO.

16.2.4.2 Reset Control

The two modes of reset control are: compatible mode and
alternate mode. The modes are controlled by the ALT RES
bit in each UDB CFG31 register. When this bit is ‘0’, the
compatible scheme is implemented. When this bit is ‘1’, the
alternate scheme is implemented.

Compatible Reset Scheme

This scheme features a routed reset, for dynamically reset-
ting the embedded state of block, which can be applied to
each PLD macrocell and the SC counter.

Compatible PLD Reset Control

Figure 16-41 shows the compatible PLD reset system, using
routed dynamic resets.

Figure 16-41. Compatible PLD Reset Structure

Compatible Datapath Reset Control

Figure 16-42 shows the compatible datapath reset system, using firmware reset. The firmware reset asynchronously clears
the DP output registers, the carry and shift out flags, the FIFO state, accumulators, and data registers. Note that the DO and
D1 registers are implemented as retention registers that maintain their state across sleep intervals. The FIFO data is
unknown because it is RAM-based.

CFGx
PLD0 RES SEL[1:0]

Reset Select
00: rc_in[0]
01: rc_in[1]
10: rc_in[2]
11: rc_in[3]

2

CFGx
PLD0 RES POL
Reset Invert
0: true
1: inverted

rc_in[3:0]

set

res

D Q

QB

SSEL

0

1

0

1

RSEL

SSEL

PLD
Macrocell

M
C

PLD0

M
C

M
C

M
C

routed
reset

System
Reset

M
C

PLD1

M
C

M
C

M
C

sysreset

pld_routed_reset

170 PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

Universal Digital Blocks (UDB)

Figure 16-42. Compatible Datapath Reset Structure

Compatible Status and Control Reset Control

Figure 16-43 shows the compatible status and control block reset. The mask/period and auxiliary control registers are reten-
tion registers.

Figure 16-43. Compatible Status and Control Reset Control

sysreset

CFGx
DP FRES dp_reset

A0/A1
RES

F1 Status
RES

ACTL
F0 CLR

F0 Status
RES

ACTL
F1 CLR

res res res

OUT
res

OUT
res

OUT
res

OUT
res

OUT
res

res
OUT

SYNC

CO
REG

SOL
MSB
REG

SOR
REG

D0/D1
RES

sysreset _ret

dp_reset_ret

CFGx
RES SEL[1:0]

Reset Select
00: rc_in[0]
01: rc_in[1]
10: rc_in[2]
11: rc_in[3]

2

CFGx
RES INV

Reset Invert
0: true
1: inverted

rc_in[3:0]

sysreset

CFGx
SC FRES sc_reset

CFGx
EN RES
CNTCTL

Status

RES

Mask/Period
(retention)

RES

Aux Control
(retention)

RES

sysreset_ret

sc_reset_ret

CFGx
EXT RES

CGFx
SC OUT CTL[1:0]

Control register is enabled for routed reset, either in
Counter mode, OR with the EXT RES bit explicitly.

Control Write Register
And Counter

RES

Control Sampling
Register

(embedded)

RES

sc_routed_reset

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B 171

Universal Digital Blocks (UDB)

Alternate Reset Scheme

Table 16-23 shows a summary of the differences between the compatible reset scheme and the alternate reset scheme.

Alternate PLD Reset Control

Figure 16-44 shows the alternate PLD reset system. Although there are provisions for individual resets for each PLD, this is
not supported in the PLD block. Therefore, in the alternate reset scheme, the PLD0 reset control settings applies to both
PLDs.

Figure 16-44. Alternate PLD Reset Structure

Alternate Datapath Reset Control

Figure 16-45 shows the alternate datapath reset system. The datapath routed reset applies to all datapath states, except the
Data Registers, which are implemented as retention registers.

Table 16-23. Reset Schemes

Feature Compatible Alternate

Granularity One routed reset is shared by all blocks in the UDB Each UDB component block can select an individual reset

Status register No routed reset capability Optionally can use the selected SC routed reset

Datapath No routed reset capability Optionally can use the selected DP routed reset

CFGx
PLD0 RES SEL[1:0]

Reset Select
00: rc_in[0]
01: rc_in[1]
10: rc_in[2]
11: rc_in[3]

2

CFGx
PLD0 RES POL

Reset Invert
0: true
1: inverted

rc_in[3:0]

set

res

D Q

QB

SSEL

0

1

0

1

RSEL

SSEL

PLD Macrocell

MC

PLD0

MC

MC

MC

routed
reset

system/
firmware

reset

MC

PLD1

MC

MC

MC

sysreset

pld_routed_reset

pld0_reset

pld1_reset
sysreset

CFGx
PLD1 RES SEL[1:0]

Reset Select
00: rc_in[0]
01: rc_in[1]
10: rc_in[2]
11: rc_in[3]

2

CFGx
PLD1 RES POL

Reset Invert
0: true
1: inverted

rc_in[3:0]

NOTE: The current
PLD only supports 1
routed reset. Both
are controlled by
PLD0 routed reset.

172 PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

Universal Digital Blocks (UDB)

Figure 16-45. Alternate Datapath Reset Structure

Alternate Status and Control Reset Control

Figure 16-46 shows the alternate status and control block reset. The mask/period and auxiliary control registers are retention
registers.

Figure 16-46. Alternate Status and Control Reset Control

CFGx
 DP RES SEL[1:0]

Reset Select
00: rc_in[0]
01: rc_in[1]
10: rc_in[2]
11: rc_in[3]

2

CFGx
DP RES POL

Reset Invert
0: true
1: inverted

rc_in[3:0]

sysreset

CFGx
EN RES DP

Carry Out
Register

Shift Out Left
Register

Output
Sync
Registers

RES

Shift Out Right
Register

Accumulator
Accumulators

RES

Accumulator
Data Registers

RES

RES

RES

RES

FIFO0 Status
RES

All elements of the Datapath are reset by the selected
DP routed reset signal, EXCEPT the Data Registers

FIFO1 Status
RES

ACTL
F0 CLR

ACTL
F1 CLR

sysreset_ret

CFGx
 SC RES SEL[1:0]

Reset Select
00: rc_in[0]
01: rc_in[1]
10: rc_in[2]
11: rc_in[3]

2

CFGx
SC RES POL

Reset Invert
0: true
1: inverted

rc_in[3:0]

sysreset

CFGx
EN RES CNTCTL

Control Write Register
and Counter

RES

Status

RES

CFGx
EN RES STAT

Mask/Period

RES

Aux Control

RESsysreset_ret

CFGx
EXT RES

CGFx
SC OUT CTL[1:0]

Control register is enabled for routed reset, either in
Counter mode, OR with the EXT RES bit explicitly.

Control Sampling
Register

(embedded)

RES

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B 173

Universal Digital Blocks (UDB)

16.2.4.3 UDB POR Initialization

Register and State Initialization

Routing Initialization

On POR, the state of input and output routing is as follows:

■ All outputs from the UDB that drive into the routing
matrix are held at '0'.

■ All drivers out of the routing and into UDB inputs are ini-
tially gated to '0'.

As a result of this initialization, conflicting drive states on the
routing are avoided and initial configuration occurs in an
order-independent sequence.

16.2.5 UDB Addressing

The UDBs can be accessed through a number of address
spaces, for 8, 16, and 32-bit accesses of both the working

registers (A0, A1, D0, D1, FIFOs, and so on) and the config-
uration registers.

■ 8-bit working registers – This address space allows
access to individual working registers in a single UDB.

■ 16-bit working registers consecutive – This address
space allows access to the same working register in two
consecutive UDBs, for example D0 of UDB n and D0 of
UDB n + 1

■ 16-bit working registers paired – This address space
allows access to two working registers, for example A0
and A1, from the same UDB.

■ 32-bit working registers – This address space allows
access to the same working register, for example A1, in
all four UDBs.

■ 8, 16 or 32-bit configuration registers – This address
space allows access to the configuration registers for a
single UDB.

16.2.6 System Bus Access Coherency

UDB registers have dual access modes:

■ System bus access, where the CPU is reading or writing
a UDB register.

■ UDB internal access, where the UDB function is updat-
ing or using the contents of a register.

16.2.6.1 Simultaneous System Bus Access

Table 16-25 lists the possible simultaneous access events
and required behavior:

Table 16-24. UDB POR State Initialization

State Element State Element POR State

Configuration Latches CFG 0 – 31 0

Ax, Dx, CTL, ACTL,
MASK

Accumulators, data regis-
ters, auxiliary control reg-
ister, mask register

0

ST, Macrocell
Status and macrocell read
only registers

0

DP CFG RAM and Fx
(FIFOs)

Datapath configuration
RAM and FIFO RAM

Unknown

PLD RAM PLD configuration RAM Unknown

Table 16-25. Simultaneous System Bus Access

Register
UDB Write

Bus Write

UDB Write

Bus Read

UDB Read

Bus Write

UDB Read

Bus Read

Ax
Undefined result Not allowed directlya, b UDB reads previous value Current value is read by both

Dx

Fx
Not supported (UDB and bus
must be opposite access)

If FIFO status flags are used, no simultaneous read/
write at the same location is possible

Not supported (UDB and bus
must be opposite access)

ST NA, bus does not write Bus reads previous value NA, UDB does not read

CTL NA, UDB does not write

UDB reads previous value
Current value is read by both

CNT Undefined result Not allowed directlyc

ACTL

NA, UDB does not writeMASK

PER

Macrocell (RO) NA, bus does not write Not allowed directlyd NA, bus does not write

a. The Ax registers can be safely read by using the software capture feature of the FIFOs.
b. The Dx registers can only be written dynamically by the FIFOs. When this mode is programmed, direct read of the Dx registers is not allowed.
c. The CNT register can only be safely read when it is disabled. An alternative for dynamically reading the CNT value is to route the output to the SC register

(in transparent mode).
d. Macrocell register bits can also be routed to the status register (in transparent mode) inputs for safe reading.

174 PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

Universal Digital Blocks (UDB)

16.2.6.2 Coherent Accumulator Access
(Atomic Reads and Writes)

The UDB accumulators are the primary target of data com-
putation. Therefore, reading these registers directly during
normal operation gives an undefined result, as indicated in
Table 16-25. However, there is built-in support for atomic
reads in the form of software capture, which is implemented
across chained blocks. In this usage model, a read of the
least significant accumulator transfers the data from all
chained blocks to their associated FIFOs. Atomic writes to
the accumulator can be implemented programmatically.
Individual writes can be performed to the input FIFOs, and
then the status signal of the last FIFO written can be routed
to all associated blocks and simultaneously transfer the
FIFO data into the Dx or Ax registers.

16.3 Port Adapter Block
The Port Adaptor block extends the UDBs to provide an
interface to the GPIOs through the High-Speed I/O Matrix
(HSIOM), described in High-Speed I/O Matrix on page 68.
The HSIOM places registers for faster routing of DSI signals
to GPIO outputs and output enables. The HSIOM also
allows GPIOs to be shared amongst multiple blocks, for
example port data registers and peripherals such as I2C.
Figure 16-47 shows a high-level view.

Figure 16-47. Port Adapter Block Diagram

Each 8-bit GPIO port has one port adaptor (PA). There are
eight inputs from the GPIO data in, eight outputs to the
GPIO data out, and eight output enable (OE) connections.
The registers in the PA are used for synchronizing inputs,
outputs, and output enables.

Another feature is the port input clock multiplexer. This mul-
tiplexer selects one of the port inputs to be used as a clock.
The clock can be used locally in the PA and routed to the
global clocks (see Clocking System chapter on page 73).

Two programmable clock selectors are available, to supply
separate clocks for the input and output synchronization reg-
isters. The OE register uses the same clock as the output
register.

Also, two programmable reset selectors are available, in the
same manner as for the clock selectors.

16.3.1 PA Data Input Logic

Figure 16-48 shows the structure for the data input logic.
Inputs are from each pin of an I/O port. The signal can be
either single synchronized or double synchronized, or syn-
chronization can be bypassed for asynchronous inputs. Syn-
chronization is to the selected port input clock. The output of
this circuit connects to the DSI routing.

Clock
Selectors

9
Global Clocks

3 DSI Signals
4

Reset
Selectors

2

2

To DSI

8

From DSI

8

8 8

8

From DSI

4

4

HSIOM

To Clock Tree

[0]

[0]

[1]

[1]

GPIO Port

8 8

 Input Synch Regs
reset

 Output Synch Regs
reset

 Output Enables
reset

Port Input
Clock Multiplexer

3

8

8

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B 175

Universal Digital Blocks (UDB)

Figure 16-48. Detail of GPIO Input Logic

16.3.2 PA Port Pin Clock Multiplexer
Logic

Figure 16-49 shows the port pin multiplexer. Each port has
eight data input signals, one of which is selected for use as
a clock. This selection is routed for use as:

■ Programmable clock in the port adapter

■ Source for the UDB clock tree

■ Programmable reset in the port adapter

■ For use as a clock enable in the port adapter.

Note that the selected signal does not pass through syn-
chronizers and is asynchronous to other clock domains
within the block. It should be used carefully for selected
functions.

Figure 16-49. Detail of GPIO Pin Selection

16.3.3 PA Data Output Logic

Figure 16-50 shows the structure for the data output logic.
Outputs go to each pin of an I/O port (through HSIOM). The
signal can be single synchronized or synchronization can be
bypassed for asynchronous outputs. Other options include
the ability to output either the selected clock or an inverted
version of the clock.

2

PACFGx
IN SYNC[1:0]

00: transparent
01: single sync
10: double sync
11: reserved

Selected
Input Reset

Selected
Input Clock

From Port Pin[j]
where j = 0-7

dsi_from_pin[j]
(to DSI routing)

8 Instances (one per port pin) in each Port Adapter

PIN CLK
MUX

dsi_from_pin[4]

dsi_from_pin[5]

3

PACFGx
PIN SEL[2:0]

Pin Clk Sel
000: sel pin 0
001: sel pin 1
010: sel pin 2
011: sel pin 3
100: sel pin 4
101: sel pin 5
110: sel pin 6
111: sel pin 7

dsi_from_pin[6]

dsi_from_pin[7]

(From Port Pins)

dsi_from_pin[0]

dsi_from_pin[1]

dsi_from_pin[2]

dsi_from_pin[3] To PA CLK/
Reset Select

176 PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

Universal Digital Blocks (UDB)

Figure 16-50. Detail of GPIO Output Data Logic

16.3.4 PA Output Enable Logic

Figure 16-51 shows the output enable (OE) logic. This circuit shares the clock and reset associated with data output. This
connection is unique in that there are four DSI outputs associated with the OE, but these are muxed to a total of four OE con-
nections to the I/O port pins, as Figure 16-52 shows.

Figure 16-51. GPIO Output Enable (OE) Sync Logic

2

PACFGx
OUT SYNC[1:0]

00: transparent
01: single sync
10: clock
11: clock inverted

Selected
Output Reset

Selected
Outout Clock

Data Mux

To Port Pin[j]
where j = i+ 0,1,2,3

dsi_to_pin[i+0]

dsi_to_pin[i+1]

2

PACFGx
DATA SEL[1:0]

00: Sel i+0
01: Sel i+1
10: Sel i+2
11: Sel i+3
where i = 0, 4

dsi_to_pin[i+2]

dsi_to_pin[i+3]

(From DSI routing)

8 Instances (one per port pin) in each Port Adapter

2

PACFGx
OE SNYC[1:0]

00: transparent
01: single sync
10: 1
11: 0

Selected
Output Reset

Selected
Outout Clock

0

1

dsi_to_oe[j]
(j=0 to 3)

4 Instances (one per DSI
OE connection) in each

Port Adapter

To OE Muxes

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B 177

Universal Digital Blocks (UDB)

Figure 16-52. GPIO Output Enable (OE) Multiplexers

Note that due to the active low sense of the OE signals at the ports, there is an additional inversion in the path between the
OE sync logic and the OE multiplexers.

16.3.5 PA Clock Multiplexer

Figure 16-53 shows the structure of the PA clock multiplexer. As noted previously, each PA has two programmable clock
selectors, to supply separate clocks for port inputs and outputs and output enables (OEs).

Figure 16-53. PA Clock Multiplexer Detail

OE MUXes

2

PACFGx
OE SEL[1:0]

00: Sel 0
01: Sel 1
10: Sel 2
11: Sel 3

8 Instances (one per OE
port pin input) in each Port

Adapter

OE selected[0]

OE selected[2]

OE selected[3]

To Port Pin OE[j]
j = 0 to 7

OE selected[1]
OE Sync

OE Sync

OE Sync

OE Sync

dsi_to_oe[0]

dsi_to_oe[1]

dsi_to_oe[2]

dsi_to_oe[3]

Latch

PACFGx
CK SEL[3:0]

{dsi_xx_rc[2:0],port_xx_rc,bus_clk_app, gclk[7:0]}

Input/Output clk

1000: res
1001: hf_clk_app
1010: res
1011: res
1100: port_xx_rc
1101: dsi_xx_rc[0]
1110: dsi_xx_rc[1]
1111: dsi_xx_rc[2]

PACFGx
EN SEL[1:0]

00: port_xx_rc
01: dsi_xx_rc[0]
10: dsi_xx_rc[1]
11: dsi_xx_rc[2]

PACFGx
EN INV

2

0: true
1: inverted

4

0: true
1: inverted

{dsi_xx_rc[2:0],port_xx_rc} FF

PACFGx
EN MODE[1:0]

00: off
01: on
10: pos edge
11: level

1 1

0

22

0

1

PACFGx
CK INV

2

0

1

0

3

2

0000: gclk[0]
0001: gclk[4]
0010: gclk[1]
0011: gclk[5]
0100: gclk[2]
0101: gclk[6]
0110: gclk[3]
0111: gclk[7]

178 PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

Universal Digital Blocks (UDB)

16.3.6 PA Reset Multiplexer

The structure of the PA reset multiplexer is shown in Figure 16-54.

Figure 16-54. PA Reset Multiplexer Detail

As shown in Figure 16-55, the reset selection logic is duplicated, one for input, and one that serves both output and output
enable. Each of these resets has an individual enable, which applies to all eight bits in the associated category.

Figure 16-55. PA Reset System

PACFGx
RES SEL[1:0]

00: port_xx_rc
01: dsi_xx_rc[0]
10: dsi_xx_rc[1]
11: dsi_xx_rc[2]

2

PACFGx
RES INV

0: true
1: inverted

{dsi_xx_rc[2:0],port_xx_rc} To Input/Output reset

{dsi_xx_rc[2:0],port_xx_rc}

To Input/Output reset

Input
Reset Select

PACFGx
RES IN EN

PACFGx
RES OUT EN

PACFGx
RES OE EN

Output
Reset Select

0

0

0

To Input Sync
Register Resets

To Output Sync
Registers Resets

To OE Sync
Registers Resets

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B 179

17. Controller Area Network (CAN)

The CAN peripheral is a fully functional Controller Area Network (CAN) supporting communication baud rates up to 1 Mbps.
The PSoC 4200M device family has two identical CAN controller blocks, which can be routed to different sets of pins. The
CAN controller block is not available in the PSoC 4100M device family. These CAN controllers are CAN2.0A and CAN2.0B
compliant to the ISO-11898 specification. The CAN protocol was originally designed for automotive applications with a focus
on a high level of fault detection and recovery. This ensures high communication reliability at a low cost. Because of its suc-
cess in automotive applications, CAN is used as a standard communication protocol for motion-oriented embedded control
applications (CANOpen) and factory automation applications (DeviceNet). The CAN features allow the efficient implementa-
tion of higher level protocols without affecting the performance of the microcontroller CPU.

Figure 17-1. CAN Bus System Implementation

17.1 Features
■ Compliant with CAN2.0A/B protocol specification:

❐ Standard and extended frames

❐ Remote transmission request (RTR) support

❐ Programmable bit rate up to 1 Mbps

■ Receive path:

❐ Sixteen receive message buffers

❐ Sixteen acceptance filters and acceptance masks

❐ DeviceNet addressing support

❐ Option to link multiple receive buffers to form a hardware FIFO

■ Transmit path:

❐ Eight transmit message buffers

❐ Programmable priority for each transmit message buffer

❐ Supports single shot transmission of messages

■ Listen-Only mode for auto baud detection

■ Internal and external loopback modes for block level testing

■ Ability to wake up the device from Sleep mode on bus activity

■ Counter for implementing time-triggered CAN

CAN Drivers

CAN Controller

CAN Transceiver

PSOC

CAN Node 1 CAN Node 2 CAN Node n

R
X

E
N

T
X

CAN_H CAN_L CAN_LCAN_H CAN_H CAN_L
CAN Bus

180 PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

Controller Area Network (CAN)

17.2 Block Diagram
To transmit a message, the host controller stores a message in the transmit message buffer and informs the transmit mes-
sage handler, which transmits the message. When a message is received, it is stored in the memory buffer and the host con-
troller can process it on demand. The transmission and reception are mainly governed by the status and configuration
registers. The interrupt controller unit handles various interrupts of the CAN module. Figure 17-2 illustrates this process.

Figure 17-2. CAN Block Diagram

17.3 CAN Message Frames
In CAN, four main frame types govern the transmission and
reception of messages:

■ Data frames

■ Remote frame

■ Error frame

■ Overload frame

17.3.1 Data Frames

Data frames are mainly used to transfer data between trans-
mitter and receiver. CAN supports mainly two types of data
frames: Standard Data Frame and Extended Data Frame.
For a CAN frame, '0' is referred to as the dominant bit and '1'
as a recessive bit.

17.3.1.1 Standard Data Frame

Figure 17-3 illustrates the standard data frame for CAN.

Figure 17-3. Standard Data Frame

AHB Bus
Coupler

Memory
Buffer

(SRAM)

Memory
Arbiter

Receive
Message
Handler

Transmit
Message
Handler

Interrupt
Controller

Status and
Configuration

Control and
Command

CAN
Framer

CAN Module

CAN

Bus
AHB bus

Start of
Frame

Arbitration Field

Identifier
(11 Bits)

RTR

Control Field

IDE
DLC

(4 Bits)
CRC
Field

ACK
Field

End of
Frame

Interframe
Space

Interframe
Space

R0
Data

(Maximum 8
Bytes)

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B 181

Controller Area Network (CAN)

Start of frame. The beginning of a data frame is indicated
by the start of frame bit. It is a single dominant bit.

Identifier. For a basic CAN data frame, the identifier is 11
bits long. It is mainly used to filter the data at the receiver
side.

Remote Transmission Request Bit (RTR). Set the RTR bit
'0' (dominant) for a data frame and set to '1' (recessive) for a
remote frame. The identifier and RTR bit are known as the
Arbitration Field.

Extended Identifier Bit (IDE). This bit must be a '0' (domi-
nant for a standard data frame and a '1' (recessive) for
extended CAN data frame.

R0. Reserved bit.

Data Length Code (DLC). These four bits indicate the num-
ber of data bytes in the data field. The IDE, R0, and DLC
bits constitute the Control Field.

Data Field. This field contains the message data. It is of
variable length and can have a maximum of 8 bytes.

Cyclic Redundancy Check (CRC). Frame checking is car-

ried out by the method of cyclic redundancy check (CRC).
The field consists of a 15-bit CRC code followed by a CRC
delimiter.

Acknowledgement Field (ACK). The ACK field is two bits
long and recessive by default. When a receiver receives a
message correctly, it overwrites the ACK field with a domi-
nant bit.

End of Frame. The end of every frame is indicated by the
End of Frame field and it consists of seven recessive bits.

17.3.1.2 Extended Data Frame

The extended CAN frame format is illustrated in Figure 17-4.
The extended CAN has a 29-bit identifier. It is arranged as
an 11-bit identifier field and an 18-bit identifier field sepa-
rated by a Substitute Remote Request (SRR) bit and an IDE
bit. The SRR bit is in the same position as the RTR bit in the
standard frame, and is recessive. The IDE bit is set for
extended frames. The Control Field of the extended data
frame has an additional reserve bit 'R1' compared to the
standard data frame.

Figure 17-4. Extended Data Frame

17.3.2 Remote Frame

The CAN bus allows a destination node to request data from
the source by sending a remote frame. There are two differ-
ences between a data frame and a remote frame: the RTR
bit is transmitted as a recessive bit in the remote frame and
there is no Data Field in the remote frame.

For extended remote frames, the SRR bit is also transmitted
as a recessive bit.

Interframe Space. Interframe space separates the data
frames and remote frames from the preceding frames.

17.3.3 Error Frame

When a node detects a bus error, it generates an error
frame. The error frame consists of an error flag and error
delimiter. The error flag is classified into two types: error
active flag and error passive flag.

Error Active Flag. When an error active node detects an
error, it sends six dominant bits as an active error flag. The
format of the error flag thus violates the rule of bit stuffing.
This forces all other nodes to send out error flags resulting
in a series of six to twelve dominant bits on the bus.

Error Passive Flag. An error passive flag consists of six
recessive bits. When an error passive node detects an error
it sends a passive error flag. A passive error does not affect

any other nodes and the error is detected only if the trans-
mitting node detects a bus error.

Error Delimiter. The error delimiter consists of eight reces-
sive bits. After transmission of an ERROR FLAG, each sta-
tion sends 'recessive' bits and monitors the bus until it
detects a 'recessive' bit. Later, it transmits seven more
'recessive' bits.

17.3.4 Overload Frame

The overload frame (OF) consists of an overload flag and an
overload delimiter. PSoC 4200M CAN controller supports
reactive overload frame, which is activated when the follow-
ing conditions occur:

■ Detection of a dominant bit during the first two bits of
intermission

■ Detection of a dominant bit in the last bit of EOF by a
receiver

■ Detection of a dominant bit by any node at the last bit of
error delimiter or overload delimiter

Start of
Frame

Identifier
(11 Bits)

SRR RTR
DLC

(4 Bits)
CRC
Field

ACK
Field

End of
Frame

Interframe
Space

Interframe
SpaceIDE

Identifier
(18 Bits) R1 R0

Data
(Maximum
8 Bytes)

Control Field

Arbitration Field

182 PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

Controller Area Network (CAN)

17.4 Transmitting Messages in CAN
The CAN module supports eight transmit message holding buffers. An internal priority arbiter selects the message according
to the chosen arbitration scheme. The arbitration scheme is either a round robin or fixed priority scheme. When a message is
transmitted or when there is a message arbitration loss, the priority arbiter re-evaluates the message priority of the next mes-
sage. The receive message buffers can also transmit remote transmit requests, which are explained later in this chapter.

Figure 17-5. Transmit (Tx) Block Diagram

17.4.1 Message Arbitration

The priority arbiter supports a round robin and fixed priority arbitration. The arbitration mode is selected using the configura-
tion register.

Round Robin. In a round robin scheme, Buffer 0 is selected first, then Buffer 1, and so on until Buffer 7; this continues again
with Buffer 0 thus forming a cycle. A particular buffer is selected only if its TX_REQ bit is set. This scheme guarantees that all
buffers receive the same probability to send a message.

Fixed Priority. Buffer 0 has the highest priority. Designate Buffer 0 as the buffer for critical messages to guarantee that mes-
sage is sent first. Priority arbitration is selected using the CFG_ARBITER bit in the Configuration register (CAN_CONFIG[12]).

Note: RTR message requests are served before TxMessage buffers are handled.

17.4.2 Message Transmit Process

Figure 17-6 shows the registers associated with a message that is transmitted.

Figure 17-6. Transmit (Tx) Message Registers

AHB
Bus

Coupler

TxMESSAGE1

TxMESSAGE0

TxMESSAGE7

RxMESSAGE1

RxMESSAGE0

RxMESSAGE15

Priority
Arbiter

CAN
Framer

TxREQ

TxREQ

TxREQ

RTR REQ

RTR REQ

RTR REQ

AHB bus

CAN
Bus

CAN Module

Reserved
[31:24]

WPN2
[23]

Reserved 1
[22]

RTR
[21]

IDE
[20]

DLC
[19:16]

ID
[31:3]

D0
[63:56]

REGISTERS

COMMAND REGISTER
(CAN_Txn_CMD)

IDENTIFIER
(CAN_Txn_ID)

 DATA REGISTER High
(CAN_Txn_DH)

DATA REGISTER Low
(CAN_Txn_DL)

D1
[55:48]

D2
[47:40]

D3
[39:32]

D4
[31:24]

D5
[23:16]

D6
[15:8]

D7
[7:0]

n = 0,1,…,7

Tx
REQ
[0]

Tx
ABORT

[1]

Tx INT
ENBL

[2]

WPN1
[3]

Reserved
[15:4]

Reserved [2:0]

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B 183

Controller Area Network (CAN)

The main steps in transmitting a standard data frame are:

1. Write the message into an empty transmit message
holding buffer. An empty buffer is indicated by the
TX_REQ bit equal to zero.

a. For standard data frame, write '0' (dominant) to the
RTR and IDE bit.

b. Write the DLC bits appropriately to specify the num-
ber of data bytes to be transferred. The maximum
number of data bytes is limited to eight. Data bytes
with MSB (most significant bit) first in each byte are
written in D0, D1…D7 locations.

c. The 11-bit message identifiers are written to the
ID[31:21] bit field.

2. Choose an appropriate priority arbitration scheme. The
internal message priority arbiter selects the message
according to the chosen arbitration scheme.

3. Request transmission by setting the respective TX_REQ
bit to '1'.

4. The TX_REQ bit remains set as long as the message
transmit request is pending. The content of the message
buffer must not be changed while the TX_REQ bit is set.

After the message is transmitted, the TX_REQ bit is cleared
and the TX_MSG interrupt status bit.
[CAN_INT_STATUS[11] in the interrupt status register
CAN_INT_STATUS is asserted. The interrupt status bit is
only asserted if the TxINT ENBL (CAN_TX[n].CONTROL[2])
is set to '1'.

17.4.3 Message Abort

A message is aborted by setting the TX_ABORT bit
(CAN_TX[n]_CONTROL[1]) in the CAN_TX[n]_CONTROL
register. This bit is automatically cleared by the hardware
when the message is aborted.

Notes

■ The CAN Buffer register (CAN_BUFFER_STATUS) is
used to read whether any transmission requests are
pending.

■ If the write protect bit wpn2 (CAN_TX[n].CONTROL[23])
is '0', then bits [21:16] of the Command register cannot
be modified because they are protected and provides an
undefined value on read back.

■ If the write protect bit wpn1 (CAN_TX[n].CONTROL[3])
is '0', then bit [2] of the Command register cannot be
modified. This bit gives a '0' upon read back.

■ Using the WPN flags(wpn1 and wpn2) enables simple
retransmission of the same message by only having to
set the TX_REQ bit without taking care of the special
flags (RTR, IDE, DLC, and TxINTENBL).

17.4.4 Single Shot Transmission

The single shot transmission mode is used in systems
where the retransmission of a CAN message due to an arbi-
tration loss or a bus error must be prevented. This is particu-
larly useful in time triggered CAN systems where all the

messages are transmitted at a fixed time.

A single shot transmission request is set by asserting
CAN_TX.CONTROL.TX_REQ and TX_ABORT bits at the
same time. Upon a successful message transmission, both
bits are cleared.

If an arbitration loss or a bus error happened during the
transmission, the TX_REQ bit is cleared, but the
TX_ABORT bit remains asserted. At the same time, the sin-
gle shot transmission failure (sst_failure) interrupt is
asserted.

17.4.5 Transmitting Extended Data
Frames

To transmit an extended data frame, certain register settings
must change compared to that of a standard data frame.
These changes are as follows.

■ For extended date frame, write '1' (recessive) to the IDE
bit.

■ The message identifiers are written to the ID[31:3] bit
field.

17.5 Receiving Messages in CAN
The CAN module has 16 receive message buffers as illus-
trated in Figure 17-7. Each message buffer has a dedicated
acceptance filter. The CAN message is received by the CAN
frame and then the received message is simultaneously
compared with all the acceptance filters and the accepted
message is stored in the respective receive message buffer.
The message available (MSG_AV) bit in the message buffer
is set to indicate the availability of the new message. Mes-
sage receipt must be acknowledged by clearing the
MSG_AV bit to allow receipt of another message.

The acceptance filter is configured by the Acceptance Mask
Register (AMR) and the Acceptance Code Register.

184 PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

Controller Area Network (CAN)

Figure 17-7. Receive (Rx) Block Diagram

17.5.1 Message Receive Process

Figure 17-8 shows the registers associated with a received message.

Figure 17-8. Receive (Rx) Message Registers

 The main steps in receiving a message are:

1. After receipt of a new message, the RxMessageHandler
hardware (as seen in Figure 17-7) searches all receive
buffer starting from RxMessage0 until it finds a valid buf-
fer. A valid buffer is indicated by:

a. Receive buffer is enabled indicated by BUFFER EN
= '1' (CAN_RX[n].CONTROL[3]).

b. Acceptance filter of the receive buffer matches
incoming message.

2. If the RxMessageHandler finds a valid buffer that is
empty, then the message is stored and the MSG AV bit
of this buffer is set to '1'.

3. If the RX INT ENBL bit is set, then the RX_MSG flag
(CAN_INT_STATUS[12]) of the interrupt controller is
asserted.

4. If the receive buffer already contains a message indi-
cated by MSG AV = '1' and the LINK_FLAG bit is not set,
then the RX_MSG_LOSS interrupt flag
(CAN_INT_STATUS[10]) is asserted. The new received
message will be discarded.

Note: The CAN buffer register (CAN_BUFFER_STATUS)
determines if any receive message buffer is available.

17.5.2 Acceptance Filter

Each receive buffer has its own acceptance filter that is used
to filter incoming messages. An acceptance filter is config-
ured by the Acceptance Mask register (AMR) and the
Acceptance Code register (ACR). The AMR defines which
bits of the incoming message must match the respective
ACR bits for accepting the message.

AMR: '0'. The incoming bit is checked against the respective
ACR bit. The message is not accepted when the incoming
bit does not match respective ACR bit.

AMR: '1'. The incoming bit is Do Not Care.

Following message fields are covered:

■ Identifier

■ IDE

■ RTR

■ Data byte 1(D0) and data byte 2(D1) (DATA[63:48])1

For a standard CAN message when IDE=0, the 11-bit identi-
fier are the bits [31:21] of AMR and ACR.

Acceptance Filter 0

Acceptance Filter 1

Acceptance Filter 2

Acceptance Filter 15

RxMessage
Handler

CAN
Framer

1
2

3

16

CAN
Bus

CAN Module
RxMESSAGE0

RxMESSAGE1

RxMESSAGE2

RxMESSAGE15

Reserved
[31:24]

WPNH
[23]

Reserved1
[22]

RTR
[21]

IDE
[20]

ID
[31:3]

D0
[63:56]

REGISTERS

COMMAND REGISTER
(CAN_RXn_CMD)

IDENTIFIER
(CAN_RXn_ID)

 DATA REGISTER High
(CAN_RXn_DH)

DATA REGISTER Low
(CAN_RXn_DL)

D1
[55:48]

D2
[47:40]

D3
[39:32]

D4
[31:24]

D5
[23:16]

D6
[15:8]

D7
[7:0]

n = 0,1,…,15

DLC
[19:16]

Reserved
[15:8]

WPNL
[7]

MSG AV
[0]

RTR REPLY
PNDG

[1]

RTR
ABORT

[2]

BUFFER
EN
[3]

RTR
REPLY

[4]

RX INT
ENBL

[5]

LINK
FLAG

[6]

Reserved
[2:0]

1. Useful for DeviceNet filtering as given in DeviceNet Filtering on page 185.

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B 185

Controller Area Network (CAN)

17.5.2.1 Example

A message and the acceptance filter settings to accept that message are shown in Figure 17-9.

Figure 17-9. Acceptance Filter

As seen in Figure 17-9, the shaded areas are masked bits.
When a bit is set to '1' in the AMR register, the correspond-
ing bit in the ACR register is not checked against the
received message frame. In the example, bits 30, 29, and
bits from 3 to 20 are set to '1' and are masked. Because
other bits in the AMR register are written as '0', the respec-
tive bits in the ACR register are compared with message bits
as shown in Figure 17-9. If the corresponding bits in ACR
match with that of the message, the message is then stored
in the receive message buffer. If the corresponding bits in
ACR do not match with the message, the incoming mes-
sage is rejected.

17.5.3 DeviceNet Filtering

For some CAN high-level protocols such as DeviceNet,
additional protocol related information is contained in the
first and second data bytes. The acceptance filters provide
additional coverage of these two bytes for a more efficient
implementation of the protocol. The data bits of the first two

bytes of the incoming message are compared with the
ACR_DATA register (CAN_RX[n]_ACR_DATA) and the
respective bits that are compared are specified using
AMR_DATA register (CAN_RX[n]_AMR_DATA). Using the
Example on page 10, DeviceNet filtering is illustrated in
Figure 17-10.

31 30 29 28 27 26 25 24 23 22 21 20 3 2 1

31 30 29 28 27 26 25 24 23 22 21 20 3 2 1

All Ones

Do Not
Care

1 10 0 0 0 0 0 0 0 0 0 0

11 1 000000 XX 0 0

=
NO

YES
ACCEPT MESSAGE

REJECT MESSAGE

Start
of

Frame 0 X X 0 0 1 1 0 0 01

RTR IDE
DLC

0 0

Message Frame

Identifier

ACR

AMR

Masked

IDE RTR

IDE RTR

0

R
S
V
D

0

R
S
V
D

0

AMR Settings: ACR Settings:
ID[31], ID[28:21] = 0

ID[30], ID[29] = 1

ID[20:3] = All Ones

IDE = 0

RTR = 0

ID[31:21] = 182h

ID[20:3] = Do Not Care

IDE = 0

RTR = 0

186 PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

Controller Area Network (CAN)

Figure 17-10. DeviceNet Filter

In Figure 17-10, the data field of the message frame is com-
pared with those bits of the ACR_DATA register, which are
not masked by the AMR_DATA register.

To accept this message, the acceptance filter settings are
as follows:

The example in Figure 17-10 shows the filtering using 10
data bits. Using AMR_DATA, up to 16 data bits, can be used
for filtering.

17.5.4 Filtering of Extended Data Frames

Filtering the extended data frame is similar to the standard
date frame with the following exception: the IDE bit in AMR
and ACR registers must be set to check for extended data
frame.

17.5.5 Receiver Message Buffer Linking

Several receive buffers can link together to form a receive
buffer array that acts almost like a receive FIFO. To accom-
plish this, do the following:

■ Set the LINK_FLAG bit in CAN_RX[n].CONTROL[6] for
the buffers that need to be linked.

■ Make sure that all buffers of the same array have the
same message filter setting (AMR and ACR are identi-
cal).

■ Do not set the LINK_FLAG bit of the last buffer of an
array.

When a receive buffer already contains a message (MSG
AV='1') and a new message arrives for this buffer, then this
message is discarded (RX_MSG_LOSS Interrupt). To avoid
this situation, several receive buffers are linked together.
When the CAN controller receives a new message, the
RxMessageHandler searches for a valid receive buffer. If
one is found that is already full (MSG AV = '1') and the
'LINK_FLAG' is set, the search for a valid receive buffer is
continued. If a valid receive buffer is found, the message is
transferred to that buffer thereby forming an array. If no
other buffer is found, then the RX_MSG_LOSS interrupt is
set.

It is possible to build several message arrays. Each of these
arrays must use the same AMR and ACR.

=
No

Yes
Accept Message

Reject Message

Start of
Frame 0 X X 0 0 1 1 0 0 01

RTR IDE DLC

Data

0 0

Message Frame Identifier

0 0 0 0 0 0 0 1 1 0
Do Not
Care

31 30 29 28 27 26 25 24 23 22 21 20 3 2 1

31 30 29 28 27 26 25 24 23 22 21 20 3 2 1

All Ones

Do Not
Care

1 10 0 0 0 0 0 0 0 0 0 0

11 1 000000 XX 0 0ACR

AMR

Masked

IDE RTR

07 689101112131415 5

7 689101112131415 5 0

Do Not
Care

All
Ones

0

00000000 11

0 0 0 0 0 1 1X XACR_DATA

AMR_DATA

0

R
S
V
D

0

R
S
V
D

0

AMR Settings: ACR Settings:
ID[28:21],ID[31] = 0

ID[30],ID[29] = 1

ID[20:3] = All Ones

IDE = 0

RTR = 0

AMR_DATA[15:11],
AMR_DATA[8:6] = 0

AMR_DATA[10:9],
AMR_DATA[5:0] = All ones

ID[31:21] = 182h

ID[20:3] = Do Not Care

IDE = 0

RTR = 0

ACR_DATA[15:6] = 06h

ACR_DATA[5:0] = Do Not
Care

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B 187

Controller Area Network (CAN)

17.6 Remote Frames
Remote frames are used for initiating transmission between
two nodes and the node acting as a receiver sends the
remote frame. A remote frame can use either standard for-
mat or extended format. A remote frame is different from a
data frame in that the RTR bit is always equal to '1' and the
data field is absent, independent of the value of DLC field.
The flow of a remote transmit request is illustrated in
Figure 17-11.

As shown in Figure 17-11:

■ The message buffer0 of node1 transmits a remote frame
into the CAN bus.

■ The RTR request is received by the RxMessageHandler
of node 2 and sends it to the acceptance filters.

■ The acceptance filter settings of the receive message
buffer 15 matches with that of the message and then the
message is moved to the receive message buffer 15.

■ If the RTR Auto Reply feature is enabled, the receive
message buffer 15 will transmit the message with the
same identifier as it received (without CPU intervention).

■ On successful transmission of RTR reply
MSG_AV_RTR_SENT bit in the CAN_RX.CONTROL
register is set, and RTR_MSG bit in the interrupt status
register is set.

■ The acceptance filter of the receive message buffer 1 of
node1 has the same identifier settings as that of the
transmitted message node 1. Hence, the RTR message
will be stored in the receive message buffer 1 of node 1.

Figure 17-11. Remote Transmit Request

17.6.1 Transmitting a Remote Frame by
the Requesting Node

The process to transmit a remote frame by a requesting
node (Node 1 as shown in Figure 17-11) is as follows.

1. Write a message to an empty transmit buffer. An empty
buffer is indicated by TX_REQ = '0'
(CAN_TX[n]_CONTROL[0]).

2. Set the RTR bit (CAN_TX[n]_CONTROL[21]) to '1'.

3. Choose an appropriate priority arbitration scheme.

4. Set the transmit request flag to initiate transmission.

5. The Identifier transmitted in a message must be the
same as the identifier of receiving message.

17.6.2 Receiving a Remote Frame

The process to receive a remote frame is as follows.

1. The acceptance filter must be configured to receive the
desired message ID.

2. Enable the automatic RTR message handling by setting
bit 'RTR REPLY' to '1'.

a. If enabled, it will automatically transmit the remote
frame with the same identifier.

b. Otherwise, the remote frame must be transmitted fol-
lowing the standard routine as that of a data frame.

3. Set the requesting node that receives the replied RTR
message to receive a normal message. Do not set the
RTR REPLY bit.

TxMESSAGE0

TxMESSAGE1

TxMESSAGE7

Priority
Arbiter

Rx
Message
Handler

Acceptance
Filters

FILTER0

FILTER1

FILTER15

RxMESSAGE0

RxMESSAGE1

RxMESSAGE15

Priority
Arbiter

Rx
Message
Handler

Acceptance
Filters

FILTER0

FILTER1

FILTER15

RxMESSAGE0

RxMESSAGE1

RxMESSAGE15

CAN Bus

CAN Bus

Message Buffers
Node 1

Receive Message
Buffers
Node 2

RTR
REQ

Node 1
Node 2

188 PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

Controller Area Network (CAN)

17.6.3 RTR Auto Reply

The CAN module supports automatic answering of RTR
message requests. All 16 receive buffers support this fea-
ture. If an RTR message is accepted in a receive buffer
where the RTR REPLY FLAG is set, then this buffer auto-
matically replies to this message with the content of the
receive buffer. The 'RTR REPLY PNDG FLAG' is set when
the RTR message request is received. It is reset when the
message is sent or when the message buffer is disabled. To
abort a pending RTR reply message, use the RTR ABORT
command.

17.6.4 Remote Frames in Extended
Format

The transmission and reception of remote frames in
extended format is similar to standard format except for the
following.

■ The IDE bit (CAN_TX[n].CONTROL [20]) is set to '1' to
make it an extended data frame.

■ The identifier is 29 bits long compared to the 11 bits of a
standard data frame.

17.7 Time-Triggered CAN
Time-triggered CAN (TTCAN) is a higher level protocol layer
on top of the CAN protocol itself. TTCAN is useful for appli-
cations where the CAN messages are periodic in nature. In
a TTCAN system, the synchronization of messages is done
with respect to a reference message from the time master in
the network. The following features available in CAN control-
ler makes it suitable for the implementation of level 1
TTCAN systems:

■ Ability for single shot transmission, as explained in sec-
tion 1.4.4.

■ An internal timer for timing the TTCAN messages

Note: For TTCAN receive buffer configured for receiving
remote frames, automatic message reply should be disabled
by clearing the CAN_RX.CONTROL.RTR_REPLY bit.

17.7.1 TTCAN Timer

A 16-bit timer sub block is included in the CAN block, which
can be used as the timer for TTCAN system. This block is
enabled based on the CAN control register setting
(CNTL.TT_ENABLE). The timer counts on nominal CAN bit
time and captures the timer count on detection of Start of
Frame (SOF) on the CAN bus. The registers associated with
TTCAN timer are the following:

■ TTCAN_COUNTER

This is the 16-bit local timer counter register
(TTCAN_COUNTER.LOCAL_TIME). It counts on nominal
bit time, based on the bit timing settings in the
TTCAN_TIMING Register.

■ TTCAN_COMPARE

This is the compare value of the local counter to generate a
time event. When TTCAN_COUNTER.LOCAL_TIME counts

to TTCAN_COMPARE register value, tt_compare hardware
event is triggered. If the TT_COMPARE bit in the interrupt
register (INTR_CAN_SET) is enabled, the corresponding bit
in the interrupt status register (INTR_CAN) is set. See sec-
tion 1.9.4.2 for details.

■ TTCAN_CAPTURE

This register captures the value of the TTCAN_COUNTER
when an SOF is detected on the CAN bus (CAN Rx input).
This will also trigger the tt_capture hardware event; if the
TT_CAPTURE bit in the interrupt register (INTR_CAN_SET)
is enabled, the corresponding bit in the interrupt status reg-
ister (INTR_CAN) is set. See section 1.9.4.2 for details.

The SOF of the reference frame is used as the synchroniza-
tion signal for a TTCAN system.

The AMR/ACR registers can be used to filter the message
ID of reference message. The TTCAN_CAPTURE register
value can be read on detection of reference message to
synchronize the time of the reference message.

■ TTCAN_TIMING

This register configures the nominal bit timing to generate
the clock for TTCAN counter. This register must be config-
ured to the same bit time settings as the CAN configuration
register.

Note: The TTCAN system design must be taken care at the
application level. The systems designer needs to decide on
how to make use of the available hardware resources to
build a complete TTCAN system.

17.8 Bit Time Configuration
The CAN module operates on a single clock input SYSCLK.
This section explains how to configure the programmable
bit-rate divider to achieve the desired bit rate and its relation-
ship with SYSCLK.

17.8.1 Allowable Bit Rates and System
Clock (SYSCLK)

Across the industry, most implementations of CAN-Bus use
one of 10 bit rates:

■ 1 Mbps

■ 800 Kbps

■ 500 Kbps

■ 250 Kbps

■ 125 Kbps

■ 100 Kbps

■ 50 Kbps

■ 20 Kbps

■ 10 Kbps

■ 5 Kbps

These bit rates are configurable if SYSCLK is 8 MHz or a
multiple. A minimum SYSCLK of 10 MHz is required to sup-
port the maximum 1-MHz bit rate. All except 800 Kbps are
configurable if SYSCLK is 10 MHz or a multiple. With a few
exceptions, all 10-bit rates are not possible if SYSCLK is not

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B 189

Controller Area Network (CAN)

evenly divisible by 1,000,000 Hz. For bit-rate generation, the
accuracy for SYSCLK must be at least 1.58 percent for 125
Kbps and slower bit rates, and 0.5 percent or better for bit
rates faster than 125 Kbps. To meet the accurate clocking
requirements of the CAN block, either use IMO with the 32-
kHz WCO PLL lock or route an accurate external clock into

the device and use it as the SYSCLK source. Note that use
of the external MHz crystal as a clock source is not sup-
ported by the PSoC 4200M device family. Figure 17-12
shows a table of the 10-bit rates that are supported for any
given fclk frequency from 8 MHz to 100 MHz. The maximum
possible frequency for PSoC 4200M is 48 MHz.

Figure 17-12. Bit Rate Versus SYSCLK

17.8.2 Setting Bit Rate TSEG1 and TSEG2

The bit rate is defined as the number of bits transmitted on a CAN bus per second. Bit time is the reciprocal of bit rate. Bit time
is divided into three segments as shown in Figure 17-13. Each segment is represented in terms of fixed units of time called
Time Quanta (TQ), which is derived from the system clock (SYSCLK).

Figure 17-13. Bit Time

clk_bus
Freq

(MHz)

1
Mb

800
Kb

500
Kb

250
Kb

125
Kb

100
Kb

50
Kb

20
Kb

10
Kb

5
Kb

8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

clk_bus
Freq
(MHz)

1
Mb

800
Kb

500
Kb

250
Kb

125
Kb

100
Kb

50
Kb

20
Kb

10
Kb

5
Kb

39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69

clk_bus
Freq

(MHz)

1
Mb

800
Kb

500
Kb

250
Kb

125
Kb

100
Kb

50
Kb

20
Kb

10
Kb

5
Kb

70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100

Configurable Bit Rates

Non Configurable Bit Rates

Tseg1
prop_seg + phase_seg1

Tseg2
phase_seg2

Sample Point
Synchronization
Segment

1 or 3 Sample Mode

Nominal Bit Time = 8...25 TQ (Time Quanta)

SJW: 1...4TQ

190 PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

Controller Area Network (CAN)

Equation 1

Equation 2

Note: Bit rate prescaler is a register that performs a prescal-
ing function on SYSCLK to generate the clock for the CAN
module. See Figure 17-14.

Synchronization Segment. This is the first segment with
one TQ length and is mainly used for synchronization. An
edge is expected to fall within this segment.

Tseg1, Tseg2. These segments compensate for the edge
phase shift errors. The tseg1 also takes in the propagation
time, which includes any delays in the network. The length
of the segments is increased or decreased to compensate
for the error due to phase shift of edges, which is known as

resynchronization.

Sample Point. This is the point at which the state of the bus
is read and the bit is interpreted. It is located at the end of
tseg1.

Synchronization Jump Width. By resynchronization, the
tseg1 is lengthened or tseg2 is shortened. Synchronization
jump width puts a limit to this resynchronization. The length
of tseg2 must be greater than the synchronization jump
width.

The Configuration register CAN_CONFIG is used to set the
bit rate prescaler (BRP), tseg1, tseg2, and the synchroniza-
tion jump width. The CAN peripheral clock (CAN_CLK) is
generated by dividing the system clock (SYSCLK) by
(BRP+1). See the Clocking section for detailed information
on available options to generate the system clock. For N
time quanta in a bit time, the CAN peripheral clock fre-
quency must be configured to N time the CAN bus bit rate.

Figure 17-14. Bit Timing Block Diagram

17.8.2.1 Example

An example to achieve 1 Mbps speed with 40 MHz is
described as follows:

The speed is 1 MHz and the bit time is 1 µs.

Choosing a minimum value of 8 TQ in the bit time, 1TQ =
0.125 µs.

BRP = ((time quanta * SYSCLK) – 1) = 4.

Therefore, write a value of '4' into the CFG_BITRATE bits in
the configuration register.

Choose the sampling point to be 60 percent of the bit time,
which is approximately equal to 5TQ. Because the sampling
point is at the end of tseg1, this implies that (tseg2+1) = 3TQ
or tseg2 = 2TQ.

To fix the sampling point synchronization jump width, use a
value '1' by writing to the bits CFG_SJW = '1'.

Write to the bits cfg_tseg2 a value of '2' to set the value of
tseg2 to 2TQ.

Now tseg1 is calculated using the following equation: tseg1
= ((BitTime - (1TQ + tseg2 + 1TQ)) - 1TQ,

which is tseg1 = 3TQ.

Therefore, write a value of '3' into the bits cfg_tseg1 in the
configuration register.

This procedure is applied to achieve the standard bit rates
using the clock frequencies as specified in Figure 17-12.

Observe the following conditions for setting tseg1 and tseg2:

■ tseg1 = 0 or tseg1 = 1 are not allowed.

■ tseg2 = 0 is not allowed; tseg2 = 1 is only allowed in
direct sampling mode

Note 1: Sampling_mode bit in the Configuration register
(CAN_CONFIG) specifies whether one sampling point is
used in the receiver path or three sampling points with
majority decision are used.

Note 2: Edge_mode bit in the Configuration register
(CAN_CONFIG) specifies whether the high to low edge is
used for synchronization or both edges are used.

17.9 Error Handling and
Interrupts in CAN

According to the CAN protocol specification, there are five
different types of errors. Each CAN node in the bus tries to
detect an error, and when it does, it sends out an error
frame. The following sections describe the different types of
errors and the process of error handling.

17.9.1 Types of Errors

17.9.1.1 BIT Error

A CAN unit sending a bit on the bus also monitors the bus.
When the bit value that is monitored is different from the bit
value that is sent, a BIT error is detected. An exception is
the sending of a 'recessive' bit during the stuffed bit stream
of the Arbitration field or during the ACK Slot. A transmitter
sending a Passive Error Flag and detecting a 'dominant' bit
does not interpret this as a BIT error.

BitTime 1 tseg1 1 tseg2 1+ + + + TQ=

TQ BRP 1+
SYSCLK
------------------------=

Divider

bitrate[14:0]

can_ clksysclk

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B 191

Controller Area Network (CAN)

17.9.1.2 FORM Error

A FORM error is detected when there is an error in the CAN
message format. The fixed format fields in the message
frame such as End of Frame and Interframe Space contain
illegal bits.

17.9.1.3 ACKNOWLEDGE Error

A transmitter sending a recessive bit during the ACK slot
monitors the ACK slot for a dominant bit. If a receiver
receives a message correctly, a dominant bit is written in the
ACK slot. Therefore, if the transmitter does not find a domi-
nant bit in the ACK slot after transmission, then an
ACKNOWLEDGE error is detected.

17.9.1.4 CRC Error

A transmitting node performs certain calculations to gener-

ate a CRC code and transmits it in the CRC field. A receiv-
ing node also performs the same calculations to generate a
CRC code. If the code generated by the receiver does not
match the code transmitted then a CRC error is detected.

17.9.1.5 STUFF Error

When there are six consecutive equal bit levels in a mes-
sage field that is coded by the message of bit stuffing, a
STUFF error is detected during the bit time of the sixth con-
secutive bit level.

17.9.2 Error Capture Register

PSoC 4200M CAN controller has a dedicated Error Capture
Register (ECR) that can be used for CAN bus diagnostics.
The error capture register is as shown in Figure 17-15.

Figure 17-15. Error Capture Register

The Error Capture Register has two modes:

Free running mode: In this mode, the ECR captures the field
and bit position within the current CAN frame.

Error capture mode: In this mode, the ECR samples the field
and bit position when a CAN error is detected. To sample
such an event, the ECR needs to be armed by performing a
write access to it. When armed, the ECR only captures one
error event. For successive error captures, the ECR needs
to be armed again by writing a '1' to the error capture regis-
ter.

Note: The IDE bit is viewed as an arbitration field in
ECR.FIELD.

17.9.3 Error States in CAN

CAN has three error states:

■ Error Active. An error active node can take part in nor-
mal bus communication. When it detects an error, it
sends out an ERROR ACTIVE FLAG.

■ Error Passive. An error passive node takes part in bus
communication. When it detects an error, it sends out an
ERROR PASSIVE FLAG. After sending out the ERROR
PASSIVE FLAG, it waits before proceeding with further
transmission. An error passive node sends an additional
eight recessive bits during the interframe space. This
period is also known as suspend transmission because
no transmission takes place.

■ Bus Off. A node that is in this state does not take part in
any bus communication. It has no effect on the bus.

The error status in CAN is indicated by the error status reg-
ister (CAN_ERROR_STATUS). The bits ERROR_STATE
(CAN_ERROR_STATUS[17:16]) indicate which error state
the CAN node is in. The error states in CAN are determined
according to the values of two counters:

■ Transmit Error Counter (CAN_ERROR_STATUS[7:0])

■ Receive Error Counter (CAN_ERROR_STATUS[15:8])

The error counters are modified according to the CAN 2.0B
Specification.

A node is in 'error active' state if the Transmit Error Counter
and the Receive Error Counter are less than or equal to 127
decimal. A node is in 'error passive' state if the Transmit or
Receive Error Counter value exceeds or equals 128 deci-
mal. A node is in 'Bus Off' state if the Transmit Error Counter
exceeds or equals the value of 256 decimal.

An 'error passive' node becomes 'error active' again when
both the Transmit Error Count and the Receive Error Count
are less than or equal to 127.

A node in 'Bus Off' state becomes 'error active' with its error
counters both set to '0' after 128 occurrences of 11 consecu-
tive 'recessive' bits are monitored on the bus.

The error status register has two bits: 'txgte96'
(CAN_ERROR_STATUS[18]) and 'rxgte96'
(CAN_ERROR_STATUS[19]). These bits indicate if the
Transmit Error Counter and Receive Error Counter, respec-
tively, are greater than or equal to 96 decimal. This feature
serves as an error warning because an error count value
greater than and around 96 indicates a heavily disturbed
bus.

17.9.4 Interrupt Sources in CAN

CAN interrupt sources can be classified into two categories:
CAN Core Interrupts and TTCAN interrupts. The
TT_ENABLE bit in the control register (CAN.CNTL) controls
the interrupt routing:

■ If TT_ENABLE = 0, the interrupt is routed directly from
the CAN core interrupts (INT_STATUS and INT_ENBL)

■ If TT_ENABLE = 1, the interrupt is generated from the
core interrupts and TTCAN timer interrupts

Reserved [31:17]
FIELD
[16:12]

BIT
[11:6]

ECR
STATUS

[0]

ERROR
TYPE
[3:1]

RX
MODE

[4]

TX
MODE

[5]

192 PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

Controller Area Network (CAN)

17.9.4.1 Core Interrupts from CAN

The core interrupts are controlled by an interrupt status
(CAN_INT_STATUS) and an interrupt enable register
(CAN_ INT_EBL) as shown in Figure 17-16. The interrupt
status register stores core interrupt events. When a bit is
set, it remains set until it is cleared by writing a '1' to it. The
interrupt enable register has no effect on the interrupt status
register.

The interrupt enable register (INT_EBL) controls which par-
ticular bits from the interrupt status register are used to
assert the interrupt output (INT_CAN_Core).
INT_CAN_Core is asserted if a particular interrupt status bit
and the respective enable bit are set. The INT_CAN_Core
routing is controlled by the CAN_CNTL.TT_ENABLE bit.
The INT_CAN_Core signal is directly routed to the CAN
block interrupt output, if the TT_ENABLE bit is zero. If the
TT_ENABLE bit is set (1), the interrupt is routed based on
the INTR_CAN_SET register setting, as shown in
Figure 17-11.

The various core interrupt sources in CAN are as follows:

■ rx_msg. Indicates a message received.

■ tx_msg. Indicates a message sent.

■ rx_msg_loss. Is set when a new message arrives but the
RxMessage flag MSG AV is set and the LINK_FLAG bit
is not set. The new message is discarded, because
there is no buffer to save it.

■ bus_off. The CAN has reached the bus off state.

■ crc_err. A CAN CRC error detected.

■ form_err. A CAN message format error detected.

■ ack_err. A CAN message acknowledge error detected.

■ stuff_err. A bit stuffing error detected.

■ bit_err. A bit error detected.

■ ovr_load. An overload frame received.

■ arb_loss. The arbitration lost while sending a message.

■ stuck_at_0. Stuck at dominant(0) error detected

■ rtr_msg. RTR auto-reply message sent

■ sst_failure. Single shot transmission

Figure 17-16. Interrupts from CAN Core

&INT_STATUS[arb_loss]

 INT_EBLl[arb_loss]

&INT_STATUS[ovr_load]

 INT_EBL[ovr_load]

&INT_STATUS[bit_err]

 INT_EBL[bit_err]

&INT_STATUS[stuff_err]

 INT_EBL[stuff_err]

&INT_STATUS[ack_err]

 INT_EBL[ack_err]

&INT_STATUS[form_err]

 INT_EBL[form_err]

&INT_STATUS[crc_err]

 INT_EBL[crc_err]

&INT_STATUS[bus_off]

 INT_EBL[bus_off]

&INT_STATUS[rx_msg_loss]
 INT_EBL[rx_msg_loss]

&INT_STATUS[tx_msg]

 INT_EBL[tx_msg]

&INT_STATUS[rx_msg]

 INT_EBL[rx_msg]

&INT_STATUS[rtr_msg]

 INT_EBL[rtr_msg]

&INT_STATUS[stuck_at_0]

INT_EBL[stuck_at_0]

&INT_STATUS[sst_failure]

INT_EBL[sst_failure]

>1 &

INT_STATUS[Global_Int_Enbl]

INT_CAN_Core

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B 193

Controller Area Network (CAN)

17.9.4.2 Interrupt Routing with TT_ENABLE = 1

If CNTL.TT_ENABLE bit is set to '1', then the CAN interrupt signal is generated from the CAN core interrupt or additional
TTCAN timer hardware interrupts based on the INT_CAN_SET and INT_CAN_MASK register settings as shown in
Figure 17-17.

Figure 17-17. CAN Interrupts with CAN_CNTL.TT_ENABLE = 1

The logical AND of INTR_CAN_SET and
INTR_CAN_MASK is available in the INTR_CAN_MASKED
register. The INTR_CAN register holds the status of the
CAN core interrupt and TTCAN timer compare and capture
interrupts, if those are enabled using the INTR_CAN_SET
register.

17.10 Operating Modes in CAN
The CAN module operates in three different modes. The
command register CAN_COMMAND is used to select the
operating modes by setting the corresponding bit for each
mode. The three operating modes are as follows:

■ Run/Stop Mode: CAN_COMMAND[0]

■ Listen Only Mode: CAN_COMMAND[1]

■ Loopback Test mode: CAN_COMMAND[2]

17.10.1 Run/Stop Mode

The CAN controller is in Run mode when it is operating nor-
mally. The CAN controller can be put into Run mode by set-
ting the CAN_COMMAND[0] bit and stopped by clearing the
same bit.

17.10.2 Listen Only Mode

In Listen Only mode, the CAN controller only listens to the
CAN receive line without acknowledging the received mes-
sages on the bus. It does not send any messages in this
mode. However, the error flags are updated so that the bit
timing is adjusted until no error occurs.

The steps for automatic baud rate detection are as follows.

1. The CAN controller is initialized for acceptance of all
messages (the global/local mask is set to '0').

2. The bit timing values of the first possible CANOpen bit
rate (10 Kbps) is loaded and the controller is switched
into "Listen Only" mode.

3. Assuming that there is traffic on the network and the bit
rate is correct, the message is accepted.

4. The error registers will not change and the flag for mes-
sage reception is set inside the CAN controller. This
means the correct bit rate is detected.

5. Assuming the bit rate is not correct, the error flags are
updated (stuff-, CRC, or form-error).

6. The CAN controller is switched off and the next possible
bit timing values are loaded from the bit rate table.

17.10.3 Loopback Test Mode

Loopback mode is used for testing purpose. Two types of
loopback modes are supported by the PSoC 4200M CAN
controller block based on the LOOPBACK bit
(CAN_COMMAND[2]) and LISTEN bit
(CAN_COMMAND[1]) settings of the command register.

17.10.3.1 External Loopback Mode

External loopback mode is enabled when
COMMAND_LOOPBACK = 1 and COMMAND_LISTEN = 0.
In this mode, CAN_TX output pin can be connected to the
CAN_RX input pin externally; this IP can process receive its
transmitted transactions.

17.10.3.2 Internal Loopback Mode

Internal loopback mode is enabled when
COMMAND_LOOPBACK = 1 and COMMAND_LISTEN = 1.
In this mode, the transmitted transactions are internally
routed back to the receiver logic.

&
INTR_CAN[tt_compare]

INTR_CAN_MASK[tt_compare]

&
INTR_CAN[tt_capture]

 INTR_CAN_MASK[tt_capture]

>1
Interrupt_can

& INTR_CAN_MASK[int_status]
Q

Q
SET

CLR

D

>1
INTR_CAN_SET[int_status]

Hw_event[tt_compare]

INTR_CAN_SET[tt_compare]

Hw_event[tt_capture]

INTR_CAN_SET[tt_capture]

>1

>1

INTR_CAN[intr_status]

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

INT_CAN_Core

194 PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

Controller Area Network (CAN)

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B 195

18. Timer, Counter, and PWM

The Timer, Counter, and Pulse Width Modulator (TCPWM) block in PSoC® 4 implements the 16-bit timer, counter, pulse
width modulator (PWM), and quadrature decoder functionality. The block can be used to measure the period and pulse width
of an input signal (timer), find the number of times a particular event occurs (counter), generate PWM signals, or decode
quadrature signals. This chapter explains the features, implementation, and operational modes of the TCPWM block.

18.1 Features
■ Eight 16-bit timers, counters, or pulse width modulators (PWM)

■ The TCPWM block supports the following operational modes:

❐ Timer

❐ Capture

❐ Quadrature decoding

❐ Pulse width modulation

❐ Pseudo-random PWM

❐ PWM with dead time

■ Multiple counting modes – up, down, and up/down

■ Clock prescaling (division by 1, 2, 4, ... 64, 128)

■ Double buffering of compare/capture and period values

■ Supports interrupt on:

❐ Terminal Count – The final value in the counter register is reached

❐ Capture/Compare – The count is captured to the capture/compare register or the counter value equals the compare
value

■ Synchronized counters – The counters can reload, start, stop, and count at the same time

■ Complementary line output for PWMs

196 PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

Timer, Counter, and PWM

18.2 Block Diagram
Figure 18-1. TCPWM Block Diagram

The block has these interfaces:

■ Bus interface: Connects the block to the CPU subsys-
tem.

■ I/O signal interface with DSI: Routes signals to or from
the universal digital block (UDB) and TCPWM block. It
consists of input triggers (such as reload, start, stop,
count, and capture) and output signals (such as overflow
(OV), underflow (UN), and capture/compare (CC)). Any
GPIO can be used as the input trigger signal.

■ Interrupts: Provides interrupt request signals from each
counter, based on terminal count (TC) or CC conditions,
and a combined interrupt signal generated by the logical
OR of all eight interrupt request signals.

■ System interface: Consists of control signals such as
clock and reset from the system resources subsystem.

This TCPWM block can be configured by writing to the
TCPWM registers. See TCPWM Registers on page 214 for
more information on all registers required for this block.

18.2.1 Enabling and Disabling Counter in
TCPWM Block

The counter can be enabled by setting the
COUNTER_ENABLED field (bit 0) of the control register
TCPWM_CTRL.

Note The counter must be configured before enabling it. If
the counter is enabled after being configured, registers are
updated with the new configuration values. Disabling the
counter retains the values in the registers until it is enabled
again (or reconfigured). Status registers are cleared after

the counter is disabled.

18.2.2 Clocking

The TCPWM receives the HFCLK through the system inter-
face to synchronize all events in the block. The counter
enable signal (counter_en), which is generated when the
counter is enabled, gates the HFCLK to provide a counter-
specific clock (counter_clock). Output triggers (explained
later in this chapter) are also synchronized with the HFCLK.

Clock Prescaling: counter_clock can be prescaled, with
divider values of 1, 2, 4… 64, 128. This is done by modifying
the GENERIC field of the counter control
(TCPWM_CNT_CTRL) register, as shown in Table 18-1.

Note Clock prescaling cannot be done in quadrature mode
and pulse width modulation mode with dead time (PWM-
DT).

Bus Interface

DSI:
underflow[7:0],
overflow[7:0],
cc[7:0]

Interrupts[7:0],
Interrupt

line_out[7:0],
line_out_en[7:0],
line_compl_out[7:0],
line_comple_out_en[7:0]

System
Interface

14

5

Counter 0

Counter 1

Counter 2

Counter 3

T
rig

ge
r

S
yn

ch
ro

n
iz

a
tio

n

C
o

nf
ig

ur
at

io
n

R

eg
is

te
rs

Bus Interface Logic

1612

CPU and Memory Sub-System

DSI:
Trigger_in

4

clock_counter_en[7:0]

Table 18-1. Bit-Field Setting to Prescale Counter Clock

GENERIC[10:8] Description

0 Divide by 1

1 Divide by 2

2 Divide by 4

3 Divide by 8

4 Divide by 16

5 Divide by 32

6 Divide by 64

7 Divide by 128

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B 197

Timer, Counter, and PWM

18.2.3 Events Based on Trigger Inputs

These are the events triggered by hardware or software.

■ Reload

■ Start

■ Stop

■ Count

■ Capture/switch

Hardware triggers can be level signal, rising edge, falling
edge, or both edges.Figure 18-2 shows the trigger selection

and event detection in the TCPWM block. The trigger con-
trol register 0 (TCPWM_CNT_TR_CTRL0) selects one of
the 14 trigger inputs as the event signal. Additionally, a con-
stant '0' and '1' signals are available to be used as the event
signal.

Any edge (rising, falling, or both) or level (high or low) can
be selected for the occurrence of an event by configuring
the trigger control register 1 (TCPWM_CNT_TR_CTRL1).
This edge/level configuration can be selected for each trig-
ger event separately. Alternatively, firmware can generate
an event by writing to the counter command register
(TCPWM_CMD), as shown in Figure 18-2.

Figure 18-2. TCPWM Trigger Selection and Event Detection

The events derived from these triggers can have different
definitions in different modes of the TCPWM block.

■ Reload: A reload event initializes and starts the counter.

❐ In up counting mode, the count register
(TCPWM_CNT_COUNTER) is initialized with ‘0’.

❐ In down counting mode, the counter is initialized with
the period value stored in the
TCPWM_CNT_PERIOD register.

❐ In up/down counting mode, the count register is ini-
tialized with ‘1’.

❐ In quadrature mode, the reload event acts as a
quadrature index event. An index/reload event indi-
cates a completed rotation and can be used to syn-
chronize quadrature decoding.

■ Start: A start event is used to start counting; it can be
used after a stop event or after re-initialization of the
counter register to any value by software. Note that the
count register is not initialized on this event.

❐ In quadrature mode, the start event acts as quadra-
ture phase input phiB, which is explained in detail in
Quadrature Decoder Mode on page 204.

■ Count: A count event causes the counter to increment
or decrement, depending on its configuration.

❐ In quadrature mode, the count event acts as quadra-
ture phase input phiA.

■ Stop: A stop event stops the counter from incrementing
or decrementing. A start event will start the counting
again.

❐ In the PWM modes, the stop event acts as a kill
event. A kill event disables all the PWM output lines.

■ Capture: A capture event copies the counter register
value to the capture register and capture register value
to the buffer capture register. In the PWM modes, the

capture event acts as a switch event. It switches the val-
ues of the capture/compare and period registers with
their buffer counterparts. This feature can be used to
modulate the pulse width and frequency.

Notes

■ All trigger inputs are synchronized to the HFCLK.

■ In the Quadrature mode, edge detection is performed
with the counter clock. In the other five modes, the edge
detection is done using the gated version of the HFCLK.

18.2.4 Output Signals

The TCPWM block generates several output signals, as
shown in Figure 18-3.

Figure 18-3. TCPWM Output Signals

18.2.4.1 Signals upon Trigger Conditions

■ Counter generates an internal overflow (OV) condition
when counting up and the count register reaches the
period value.

■ Counter generates an internal underflow (UN) condition
when counting down and the count register reaches
zero.

trigger control register 1

rising edge

falling edge

both

pass through
counter command

register (SW generated)

event

2

Edge
Detector
Circuit

Trigger signal

Trigger
Synchronisation

System bus
clock

1

0

Trigger_in [13:0]

trigger control register 0

14

4

T C P W M b lo ck

In te rru p t 4
In te rru p t 5
In te rru p t 6
In te rru p t 7

In te rru p t

lin e _o u t
lin e _c o m p l_o u t

8
8
8

U n d e rflo w
O ve rflo w
C C

8
8

In te rru p t 0
In te rru p t 1
In te rru p t 2
In te rru p t 3

198 PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

Timer, Counter, and PWM

■ The capture/compare (CC) condition is generated by the
TCPWM when the counter is running and one of the fol-
lowing conditions occur:

❐ The counter value equals the compare value.

❐ A capture event occurs - When a capture event
occurs, the TCPWM_CNT_COUNTER register value
is copied to the capture register and the capture reg-
ister value is copied to the buffer capture register.

Note These signals, when they occur, remain at logic high
for two cycles of the system clock. For reliable operation, the
condition that causes this trigger should be less than a quar-
ter of the HFCLK. For example, if the HFCLK is running at
24 MHz, the condition causing the trigger should occur at a

frequency less than 6 MHz.

18.2.4.2 Interrupts

The TCPWM block provides a dedicated interrupt output sig-
nal from the counter. An interrupt can be generated for a TC
condition or a CC condition. The exact definition of these
conditions is mode-specific. All eight interrupt output signals
from the eight TCPWMs are also OR'ed together to produce
a single interrupt output signal.

Four registers are used for interrupt handling in this block,
as shown in Table 18-2.

18.2.4.3 Outputs

The TCPWM has two outputs, line_out and line_compl_out (complementary of line_out). Note that the OV, UN, and CC con-
ditions can be used to drive line_out and line_compl_out if needed, by configuring the TCPWM_CNT_TR_CTRL2 register
(Table 18-3). The line_out and line_compl_out is enabled by the line_out_en and line_compl_out_en, one for each counter.

Table 18-2. Interrupt Register

Interrupt Registers Bits Name Description

TCPWM_CNT_INTR

(Interrupt request register)

0 TC
This bit is set to '1', when a terminal count is detected. Write '1' to clear this
bit.

1 CC_MATCH
This bit is set to ‘1’ when the counter value matches capture/compare regis-
ter value. Write '1' to clear this bit.

TCPWM_CNT_INTR_SET

(Interrupt set request register)

0 TC
Write '1' to set the corresponding bit in the interrupt request register. When
read, this register reflects the interrupt request register status.

1 CC_MATCH
Write '1' to set the corresponding bit in the interrupt request register. When
read, this register reflects the interrupt request register status.

TCPWM_CNT_INTR_MASK

(Interrupt mask register)

0 TC Mask bit for the corresponding TC bit in the interrupt request register.

1 CC_MATCH
Mask bit for the corresponding CC_MATCH bit in the interrupt request reg-
ister.

TCPWM_CNT_INTR_MASKED

(Interrupt masked request register)

0 TC Logical AND of the corresponding TC request and mask bits.

1 CC_MATCH Logical AND of the corresponding CC_MATCH request and mask bits.

Table 18-3. Configuring Output Line for OV, UN, and CC Conditions

Field Bit Value Event Description

CC_MATCH_MODE
Default Value = 3

1:0

0 Set line_out to '1

Configures output line on a com-
pare match (CC) event

1 Clear line_out to '0

2 Invert line_out

3 No change

OVERFLOW_MODE
Default Value = 3

3:2

0 Set line_out to '1

Configures output line on a over-
flow (OV) event

1 Clear line_out to '0

2 Invert line_out

3 No change

UNDERFLOW_MODE
Default Value = 3

5:4

0 Set line_out to '1

Configures output line on a under-
flow (UN) event

1 Clear line_out to '0

2 Invert line_out

3 No change

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B 199

Timer, Counter, and PWM

18.2.5 Power Modes

The TCPWM block works in Active and Sleep modes. The TCPWM block is powered from VCCD. The configuration registers
and other logic are powered in Deep-Sleep mode to keep the states of configuration registers. See Table 18-4 for details.

18.3 Modes of Operation
The counter block can function in six operational modes, as shown in Table 18-5. The MODE [26:24] field of the counter con-
trol register (TCPWM_CNTx_CTRL) configures the counter in the specific operational mode.

The counter can be configured to count up, down, and up/down by setting the UP_DOWN_MODE[17:16] field in the
TCPWM_CNT_CTRL register, as shown in Table 18-6.

Table 18-4. Power Modes in TCPWM Block

Power Mode Block Status

Active This block is fully operational in this mode with clock running and power switched on.

Sleep All counter clocks are on, but bus interface cannot be accessed.

Deep-Sleep
In this mode, the power to this block is still on but no bus clock is provided; hence, the logic is not functional.
All the configuration registers will keep their state.

Hibernate In this mode, the power to this block is switched off. Configuration registers will lose their state.

Stop In this mode, the power to this block is switched off. Configuration registers will lose their state.

Table 18-5. Operational Mode Configuration

Mode
MODE Field

[26:24]
Description

Timer 000
Implements a timer or counter. The counter increments or decrements by '1' at every coun-
ter clock cycle in which a count event is detected.

Capture 010
Implements a timer or counter with capture input. The counter increments or decrements by
'1' at every counter clock cycle in which a count event is detected. When a capture event
occurs, the counter value copies into the capture register.

Quadrature Decoder 011
Implements a quadrature decoder, where the counter is decremented or incremented,
based on two phase inputs according to the selected (X1, X2 or X4) encoding scheme.

PWM 100
Implements edge/center-aligned PWMs with an 8-bit clock prescaler and buffered compare/
period registers.

PWM-DT 101
Implements edge/center-aligned PWMs with configurable 8-bit dead time (on both outputs)
and buffered compare/period registers.

PWM-PR 110 Implements a pseudo-random PWM using a 16-bit linear feedback shift register (LFSR).

Table 18-6. Counting Mode Configuration

Counting Modes
UP_DOWN_M
ODE[17:16]

Description

UP Counting Mode 00
Increments the counter until the period value is reached. A Terminal Count (TC) condition is
generated when the counter reaches the period value.

DOWN Counting Mode 01
Decrements the counter from the period value until 0 is reached. A TC condition is gener-
ated when the counter reaches ‘0’.

UP/DOWN Counting Mode 0 10
Increments the counter until the period value is reached, and then decrements the counter
until ‘0’ is reached. A TC condition is generated only when ‘0’ is reached.

UP/DOWN Counting Mode 1 11
Similar to up/down counting mode 0 but a TC condition is generated when the counter
reaches ‘0’ and when the counter value reaches the period value.

200 PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

Timer, Counter, and PWM

18.3.1 Timer Mode

The timer mode is commonly used to measure the time of occurrence of an event or to measure the time difference between
two events.

18.3.1.1 Block Diagram

Figure 18-4. Timer Mode Block Diagram

18.3.1.2 How It Works

The timer can be configured to count in up, down, and up/down counting modes. It can also be configured to run in either con-
tinuous mode or one-shot mode.

The following explains the working of the timer:

■ The timer is an up, down, and up/down counter.

❐ The current count value is stored in the count register (TCPWM_CNTx_COUNTER).
Note It is not recommended to write values to this register while the counter is running.

❐ The period value for the timer is stored in the period register.

■ The counter is re-initialized in different counting modes as follows:

❐ In the up counting mode, after the count reaches the period value, the count register is automatically reloaded with 0.

❐ In the down counting mode, after the count register reaches zero, the count register is reloaded with the value in the
period register.

❐ In the up/down counting modes, the count register value is not updated upon reaching the terminal values. Instead the
direction of counting changes when the count value reaches 0 or the period value.

■ The CC condition is generated when the count register value equals the compare register value. Upon this condition, the
compare register and buffer compare register switch their values if enabled by the AUTO_RELOAD_CC bit-field of the
counter control (TCPWM_CNT_CTRL) register. This condition can be used to generate an interrupt request.

Figure 18-5 shows the timer operational mode of the counter in four different counting modes. The period register contains
the maximum counter value.

■ In the up counting mode, a period value of A results in A+1 counter cycles (0 to A).

■ In the down counting mode, a period value of A results in A+1 counter cycles (A to 0).

■ In the two up/down counting modes (both modes 0 and 1 both), a period value of A results in 2*A counter cycles (1 to A
and back to 0).

PERIOD

COUNTER

COMPARE

 BUFFER
COMPARE

==

==

Reload

Start

Stop

Count

UN

OV

CC

TC

counter_clock

Capture

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B 201

Timer, Counter, and PWM

Figure 18-5. Timing Diagram for Timer in Multiple Counting Modes

Period

TC

Counter

Timer, down counting mode

0xFF

0xFF

counter_clock

0xFF

0xFE

0xFD

0xFC

0x01

0x00

0xFF

0xFE

0xFD

0xFC

0x01

0x00

0xFF

0xFE

0x02

0x03

UN

OV

Period

TC

Counter

Timer, up counting mode

0xFF

0x00

0x01

0x02

0x03

0xFE

0xFF

counter_clock

0x00

0x01

0x02

0x03

0xFE

0xFF

0x00

0x01

0xFE

0x02

UN

OV

Period

TC

Counter

Timer, up/down counting mode
1

0xFF

0x00

0x01

0x02

0x03

0xFE

0xFF

0xFE

0xFD

0xFC

0x01

0x00

0x01

0x02

0x03

0xFE

0xFF

counter_clock

UN

OV

202 PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

Timer, Counter, and PWM

Note The OV and UN signals remain at logic high for one cycle of the HFCLK, as explained in Signals upon Trigger Condi-
tions on page 197. The figures in this chapter assume that HFCLK and counter clock are the same.

18.3.1.3 Configuring Counter for Timer Mode

The steps to configure the counter for Timer mode of opera-
tion and the affected register bits are as follows.

1. Disable the counter by writing '0' to the corresponding bit
in the COUNTER_ENABLED field of the TCPWM_CTRL
register.

2. Select Timer mode by writing '000' to the MODE[26:24]
field of the TCPWM_CNT_CTRL register.

3. Set the required 16-bit period in the
TCPWM_CNT_PERIOD register.

4. Set the 16-bit compare value in the TCPWM_CNT_CC
register and the buffer compare value in the
TCPWM_CNT_CC_BUFF register.

5. Set AUTO_RELOAD_CC field of the
TCPWM_CNT_CTRL register, if required to switch val-
ues at every CC condition.

6. Set clock prescaling by writing to the GENERIC[15:8]
field of the TCPWM_CNT_CTRL register, as shown in
Table 18-1.

7. Set the direction of counting by writing to the
UP_DOWN_MODE[17:16] field of the
TCPWM_CNT_CTRL register, as shown in Table 18-6.

8. The timer can be configured to run either in continuous
mode or one-shot mode by writing 0 or 1, respectively to
the ONE_SHOT[18] field of the TCPWM_CNT_CTRL
register.

9. Set the TCPWM_CNT_TR_CTRL0 register to select the
trigger that causes the event (Reload, Start, Stop, Cap-
ture, and Count).

10. Set the TCPWM_CNT_TR_CTRL1 register to select the
edge of the trigger that causes the event (Reload, Start,
Stop, Capture, and Count).

11. If required, set the interrupt upon TC or CC condition, as
shown in Interrupts on page 198.

12. Enable the counter by writing '1' to the corresponding bit
in the COUNTER_ENABLED field of the TCPWM_CTRL
register. A start trigger must be provided through firm-
ware (TCPWM_CMD register) to start the counter if the
hardware start signal is not enabled.

18.3.2 Capture Mode

In the capture mode, the counter value can be captured at
any time either through a firmware write to command regis-
ter (TCPWM_CMD) or a capture trigger input. This mode is
used for period and pulse width measurement.

18.3.2.1 Block Diagram

Figure 18-6. Capture Mode Block Diagram

18.3.2.2 How it Works

The counter can be set to count in up, down, and up/down
counting modes by configuring the
UP_DOWN_MODE[17:16] bit-field of the counter control
register (TCPWM_CNT_CTRL).

Operation in capture mode occurs as follows:

■ During a capture event, generated either by hardware or
software, the current count register value is copied to the
capture register (TCPWM_CNT_CC) and the capture

Period

TC

Counter

Timer, up/down counting mode 0

0xFF

0x00

0x01

0x02

0x03

0xFE

0xFF

0xFE

0xFD

0xFC

0x01

0x00

0x01

0x02

0x03

0xFE

0xFF

counter_clock

UN

OV

PERIOD

COUNTER

CAPTURE

 CAPTURE BUFFER

==

Reload

Start

Stop

Count

UN

OV

CC

TC

counter_clock

Capture

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B 203

Timer, Counter, and PWM

register value is copied to the buffer capture register
(TCPWM_CNT_CC_BUFF).

■ A pulse on the CC output signal is generated when the
counter value is copied to the capture register. This con-
dition can also be used to generate an interrupt request.

Figure 18-7 illustrates the capture behavior in the up count-
ing mode.

Figure 18-7. Timing Diagram of Counter in Capture Mode, Up Counting Mode

In the figure, observe that:

■ The period register contains the maximum count value.

■ Internal overflow (OV) and TC conditions are generated
when the counter reaches the period value.

■ A capture event is only possible at the edges or through
software. Use trigger control register 1 to configure the
edge detection.

■ Multiple capture events in a single clock cycle are han-
dled as:

❐ Even number of capture events - no event is
observed

❐ Odd number of capture events - single event is
observed

This happens when the capture signal frequency is greater
than the counter_clock frequency.

18.3.2.3 Configuring Counter for Capture
Mode

The steps to configure the counter for Capture mode opera-
tion and the affected register bits are as follows.

1. Disable the counter by writing '0' to the corresponding bit
in the COUNTER_ENABLED field of the TCPWM_CTRL
register.

2. Select Capture mode by writing '010' to the
MODE[26:24] field of the TCPWM_CNT_CTRL register.

3. Set the required 16-bit period in the
TCPWM_CNT_PERIOD register.

4. Set clock prescaling by writing to the GENERIC[15:8]
field of the TCPWM_CNT_CTRL register, as shown in
Table 18-1.

5. Set the direction of counting by writing to the
UP_DOWN_MODE[17:16] field of the
TCPWM_CNT_CTRL register, as shown in Table 18-6.

6. Counter can be configured to run either in continuous
mode or one-shot mode by writing 0 or 1, respectively to
the ONE_SHOT[18] field of the TCPWM_CNT_CTRL
register.

7. Set the TCPWM_CNT_TR_CTRL0 register to select the
trigger that causes the event (Reload, Start, Stop, Cap-
ture, and Count).

8. Set the TCPWM_CNT_TR_CTRL1 register to select the
edge that causes the event (Reload, Start, Stop, Cap-
ture, and Count).

9. If required, set the interrupt upon TC or CC condition, as
shown in Interrupts on page 198.

10. Enable the counter by writing '1' to the corresponding bit
in the COUNTER_ENABLED field of the TCPWM_CTRL
register. A start trigger must be provided through firm-
ware (TCPWM_CMD register) to start the counter if the
hardware start signal is not enabled.

Period

Counter

OV

UN

TC

Capture, up counting mode

capture

capture buffer

CC

counter_clock

0xFF

Capture trigger

0x00
0x01

0x02

0x03

0xFE

0x02

0x02

0xFE

0xFE

0x03

0x00

0x01

0x02

0x03

0xFE

0x00

0x01

0x02

204 PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

Timer, Counter, and PWM

18.3.3 Quadrature Decoder Mode

Quadrature decoders are used to determine speed and position of a rotary device (such as servo motors, volume control
wheels, and PC mice). The quadrature encoder signals are used as phiA and phiB inputs to the decoder.

18.3.3.1 Block Diagram

Figure 18-8. Quadrature Mode Block Diagram

18.3.3.2 How It Works

Quadrature decoding only runs on counter_clock. It can
operate in three sub-modes: X1, X2, and X4 modes. These
encoding modes can be controlled by the
QUADRATURE_MODE[21:20] field of the counter control
register (TCPWM_CNT_CTRL). This mode uses double
buffered capture registers.

The Quadrature mode operation occurs as follows:

■ Quadrature phases phiA and phiB: Counting direction is
determined by the phase relationship between phiA and
phiB. These phases are connected to the count and the
start trigger inputs, respectively as hardware input to the
decoder.

■ Quadrature index signal: This is connected to the reload
signal as a hardware input. This event generates a TC
condition, as shown in Figure 18-9.

On TC, the counter is set to 0x0000 (in the up counting
mode) or to the period value (in the down counting
mode).

Note The down counting mode is recommended to be
used with a period value of 0x8000 (the mid-point value).

■ A pulse on CC output signal is generated when the count
register value reaches 0x0000 or 0xFFFF. On a CC con-
dition, the count register is set to0x8000.

■ On TC or CC condition:

❐ Count register value is copied to the capture register

❐ Capture register value is copied to the buffer capture
register

❐ This condition can be used to generate an interrupt
request

■ The value in the capture register can be used to deter-
mine which condition caused the event and whether:

❐ A counter underflow occurred (value 0)

❐ A counter overflow occurred (value 0xFFFF)

❐ An index/TC event occurred (value is not equal to
either 0 or 0xFFFF)

■ The DOWN bit field of counter status
(TCPWM_CNTx_STATUS) register can be read to deter-
mine the current counting direction. Value '0' indicates a
previous increment operation and value '1' indicates pre-
vious decrement operation. Figure 18-9 illustrates
quadrature behavior in the X1 encoding mode.

❐ A positive edge on phiA increments the counter
when phiB is '0' and decrements the counter when
phiB is '1'.

❐ The count register is initialized with the period value
on an index/reload event.

❐ Terminal count is generated when the counter is ini-
tialized by index event. This event can be used to
generate an interrupt.

❐ When the count register reaches 0xFFFF (the maxi-
mum count register value), the count register value is
copied to the capture register and the count register
is initialized with0x8000.

PERIOD

COUNTER

CAPTURE

 BUFFER CAPTURE

==

index

phiA

Stop

phiB

CC

TC

counter_clock

0x0000
0xFFFF

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B 205

Timer, Counter, and PWM

Figure 18-9. Timing Diagram for Quadrature Mode, X1 Encoding

The quadrature phases are detected on the counter_clock. Within a single counter_clock period, the phases should not
change value more than once.

The X2 and X4 quadrature encoding modes count twice and four times as fast as the X1 encoding mode.

Figure 18-10 illustrates the quadrature mode behavior in the X2 and X4 encoding modes.

Period

TC

CC

Quadrature, X1 encoding

0x8000

Y 0xFFFFcapture

buffer capture
X Y

0x8000 0x8001 0x8002 0x8000 0x7FFFcounter

phiA

phiB

index/reload
event

0x8003

counter_clock

0xFFFF

206 PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

Timer, Counter, and PWM

Figure 18-10. Timing Diagram for Quadrature Mode, X2 and X4 Encoding

18.3.3.3 Configuring Counter for Quadrature Mode

The steps to configure the counter for quadrature mode of operation and the affected register bits are as follows.

1. Disable the counter by writing '0' to the corresponding bit in the COUNTER_ENABLED field of the TCPWM_CTRL regis-
ter.

2. Select Quadrature mode by writing '011' to the MODE[26:24] field of the TCPWM_CNT_CTRL register.

3. Set the required 16-bit period in the TCPWM_CNT_PERIOD register.

4. Set the required encoding mode by writing to the QUADRATURE_MODE[21:20] field of the TCPWM_CNT_CTRL register.

5. Set the TCPWM_CNT_TR_CTRL0 register to select the trigger that causes the event (Index and Stop).

6. Set the TCPWM_CNT_TR_CTRL1 register to select the edge that causes the event (Index and Stop).

7. If required, set the interrupt upon TC or CC condition, as shown in Interrupts on page 198.

8. Enable the counter by writing '1' to the corresponding bit in the COUNTER_ENABLED field of the TCPWM_CTRL register.

Period

TC

Quadrature, X2 encoding

4

counter

phiA

phiB

index/reload
event

counter_clock

4 5 6 7 8 7 6

Period

TC

Quadrature, X4 encoding

4

counter

phiA

phiB

index/reload
event

counter_clock

4 5 6 7 8 9 10 11 12 11 10 9 8

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B 207

Timer, Counter, and PWM

18.3.4 Pulse Width Modulation Mode

The PWM mode is also called the Digital Comparator mode. The comparison output is a PWM signal whose period depends
on the period register value and duty cycle depends on the compare and period register values.

PWM period = (period value/counter clock frequency) in left- and right-aligned modes

PWM period = (2 × (period value/counter clock frequency)) in center-aligned mode

Duty cycle = (compare value/period value) in left- and right-aligned modes

Duty cycle = ((period value-compare value)/period value) in center-aligned mode

18.3.4.1 Block Diagram

Figure 18-11. PWM Mode Block Diagram

18.3.4.2 How It Works

The PWM mode can output left, right, center, or asymmetri-
cally aligned PWM signals. The desired output alignment is
achieved by using the counter's up, down, and up/down
counting modes selected using UP_DOWN_MODE [17:16]
bits in the TCPWM_CNT_CTRL register, as shown in
Table 18-6.

This CC signal along with OV and UN signals control the
PWM output line. The signals can toggle the output line or
set it to a logic '0' or '1' by configuring the
TCPWM_CNT_TR_CTRL2 register. By configuring how the
signals impact the output line, the desired PWM output
alignment can be obtained.

The recommended way to modify the duty cycle is:

■ The buffer period register and buffer compare register
are updated with new values.

■ On TC, the period and compare registers are automati-
cally updated with the buffer period and buffer compare
registers when there is an active switch event. The
AUTO_RELOAD_CC and AUTO_RELOAD_PERIOD
fields of the counter control register are set to ‘1’. When
a switch event is detected, it is remembered until the
next TC event. Pass through signal (selected during
event detection setting) cannot trigger a switch event.

■ Updates to the buffer period register and buffer compare
register should be completed before the next TC with an
active switch event; otherwise, switching does not reflect
the register update, as shown in Figure 18-13.

In the center-aligned mode, the settings to be done are:
underflow = clear, overflow = set, and CC = invert.

At the reload event, the count register is initialized and starts
counting in the appropriate mode. At every count, the count
register value is compared with compare register value to
generate the CC signal on match.

Figure 18-12 illustrates center-aligned PWM with buffered
period and compare registers (up/down counting mode 0).

line_out_compl

PERIOD

COUNTER

COMPARE

 BUFFER COMPARE

==

reload

start

stop

switch

UN

OV

CC

TC

counter_clock

BUFFER PERIOD

PWM
line_out

count

208 PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

Timer, Counter, and PWM

Figure 18-12. Timing Diagram for Center Aligned PWM

Figure 18-12 illustrates center-aligned PWM with software generated switch events:

■ Software generates a switch event only after both the period buffer and compare buffer registers are updated.

■ Because the updates of the second PWM pulse come late (after the terminal count), the first PWM pulse is repeated.

■ Note that the switch event is automatically cleared by hardware at TC after the event takes effect.

Figure 18-13. Timing Diagram for Center Aligned PWM (software switch event

new period value B, new compare value N

A B

B

A

BA

M

M

N

N N

M

SW update of buffers

reload event

period buffer

period

compare

compare buffer

Counter

A

0

Switch at TC condition

B

M

N

TC

CC

line_out

counter_clock

A B

BA

M

M

N

N

Switch event

reload event

period buffer

period

compare

compare buffer

Counter

A

0

Switch at TC condition
B

M

N

TC

CC

line_out

M

A

counter_clock

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B 209

Timer, Counter, and PWM

18.3.4.3 Other Configurations

■ For asymmetric PWM, the up/down counting mode 1
should be used. This causes a TC when the counter
reaches either ‘0’ or the period value. To create an
asymmetric PWM, the compare register is changed at
every TC (when the counter reaches either ‘0’ or the
period value), whereas the period register is only
changed at every other TC (only when the counter
reaches ‘0’). Ensure that within a PWM period, the
period values remain the same.

■ For left-aligned PWM, use the up counting mode; config-
ure the OV condition to set output line to '1' and CC con-
dition to reset the output line to '0'. See Table 18-3.

■ For right-aligned PWM, use the down counting mode;
configure UN condition to reset output line to '0' and CC
condition to set the output line to '1'. See Table 18-3.

18.3.4.4 Kill Feature

The kill feature gives the ability to disable both output lines
immediately. This event can be programmed to stop the
counter by modifying the PWM_STOP_ON_KILL and
PWM_SYNC_KILL fields of the counter control register, as
shown in Table 18-7.

A kill event can be programmed to be asynchronous or syn-
chronous, as shown in Table 18-8.

In the synchronous kill, PWM cannot be started before the
next TC. To restart the PWM immediately after kill input is
removed, kill event should be asynchronous (see
Table 18-8). The generated stop event disables both output
lines. In this case, the reload event can use the same trigger
input signal but should be used in falling edge detection
mode.

18.3.4.5 Configuring Counter for PWM Mode

The steps to configure the counter for the PWM mode of
operation and the affected register bits are as follows.

1. Disable the counter by writing '0' to the corresponding bit
in the COUNTER_ENABLED field of the TCPWM_CTRL
register.

2. Select PWM mode by writing '100' to the MODE[26:24]
field of the TCPWM_CNT_CTRL register.

3. Set clock prescaling by writing to the GENERIC[15:8]
field of the TCPWM_CNT_CTRL register, as shown in
Table 18-1.

4. Set the required 16-bit period in the
TCPWM_CNT_PERIOD register and the buffer period
value in the TCPWM_CNT_PERIOD_BUFF register to
switch values, if required.

5. Set the 16-bit compare value in the TCPWM_CNT_CC
register and buffer compare value in the
TCPWM_CNT_CC_BUFF register to switch values, if
required.

6. Set the direction of counting by writing to the
UP_DOWN_MODE[17:16] field of the
TCPWM_CNT_CTRL register to configure left-aligned,
right-aligned, or center-aligned PWM, as shown in
Table 18-6.

7. Set the PWM_STOP_ON_KILL and PWM_SYNC_KILL
fields of the TCPWM_CNT_CTRL register as required.

8. Set the TCPWM_CNT_TR_CTRL0 register to select the
trigger that causes the event (Reload, Start, Kill, Switch,
and Count).

9. Set the TCPWM_CNT_TR_CTRL1 register to select the
edge that causes the event (Reload, Start, Kill, Switch,
and Count).

10. line_out and line_out_compl can be controlled by the
TCPWM_CNT_TR_CTRL2 register to set, reset, or
invert upon CC, OV, and UN conditions.

11. If required, set the interrupt upon TC or CC condition, as
shown in Interrupts on page 198.

12. Enable the counter by writing '1' to the corresponding bit
in the COUNTER_ENABLED field of the TCPWM_CTRL
register. A start trigger must be provided through firm-
ware (TCPWM_CMD register) to start the counter if the
hardware start signal is not enabled.

Table 18-7. Field Setting for Stop on Kill Feature

PWM_STOP_ON_KI
LL Field

Comments

0
The kill trigger temporarily blocks the PWM
output line but the counter is still running.

1
The kill trigger temporarily blocks the PWM
output line and the counter is also stopped.

Table 18-8. Field Setting for Synchronous/Asynchronous
Kill

PWM_SYNC_KILL
Field

Comments

0
An asynchronous kill event lasts as long as
it is present. This event requires pass
through mode.

1
A synchronous kill event disables the out-
put lines until the next TC event. This
event requires rising edge mode.

210 PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

Timer, Counter, and PWM

18.3.5 Pulse Width Modulation with Dead Time Mode

Dead time is used to delay the transitions of both ‘line_out’ and ‘line_out_compl’ signals. It separates the transition edges of
these two signals by a specified time interval. Two complementary output lines 'dt_line' and 'dt_line_compl' are derived from
these two lines. During the dead band period, both compare output and complement compare output are at logic ‘0’ for a fixed
period. The dead band feature allows the generation of two non-overlapping PWM pulses. A maximum dead time of 255
clocks can be generated using this feature.

18.3.5.1 Block Diagram

Figure 18-14. PWM-DT Mode Block Diagram

18.3.5.2 How It Works

The PWM operation with Dead Time mode occurs as fol-
lows:

■ On the rising edge of the PWM line_out, depending upon
UN, OV, and CC conditions, the dead time block sets the
dt_line and dt_line_compl to '0'.

■ The dead band period is loaded and counted for the
period configured in the register.

■ When the dead band period is complete, dt_line is set to
'1'.

■ On the falling edge of the PWM line_out depending upon
UN, OV, and CC conditions, the dead time block sets the
dt_line and dt_line_compl to '0'.

■ The dead band period is loaded and counted for the
period configured in the register.

■ When the dead band period has completed,
dt_line_compl is set to '1'.

■ A dead band period of zero has no effect on the dt_line
and is the same as line_out.

■ When the duration of the dead time equals or exceeds
the width of a pulse, the pulse is removed.

This mode follows PWM mode and supports the following
features available with that mode:

■ Various output alignment modes

■ Two complementary output lines, dt_line and
dt_line_compl, derived from PWM "line_out" and "line
_out_compl", respectively

❐ Stop/kill event with synchronous and asynchronous
modes

❐ Conditional switch event for compare and buffer
compare registers and period and buffer period reg-
isters

This mode does not support clock prescaling.

Figure 18-15 illustrates how the complementary output lines
"dt_line" and "dt_line_compl" are generated from the PWM
output line, "line_out".

PERIOD

COUNTER

COMPARE

 BUFFER COMPARE

==

Reload

Start

Stop

Switch

CC

TC

counter_clock

BUFFER PERIOD

PWM
dt_line

Count
Dead Time

dt_line_compl

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B 211

Timer, Counter, and PWM

Figure 18-15. Timing Diagram for PWM, with and without Dead Time

18.3.5.3 Configuring Counter for PWM with
Dead Time Mode

The steps to configure the counter for PWM with Dead Time
mode of operation and the affected register bits are as fol-
lows:

1. Disable the counter by writing '0' to the corresponding bit
in the COUNTER_ENABLED field of the TCPWM_CTRL
register.

2. Select PWM with Dead Time mode by writing '101' to the
MODE[26:24] field of the TCPWM_CNT_CTRL register.

3. Set the required dead time by writing to the
GENERIC[15:8] field of the TCPWM_CNT_CTRL regis-
ter, as shown in Table 18-1.

4. Set the required 16-bit period in the
TCPWM_CNT_PERIOD register and the buffer period
value in the TCPWM_CNT_PERIOD_BUFF register to
switch values, if required.

5. Set the 16-bit compare value in the TCPWM_CNT_CC
register and the buffer compare value in the
TCPWM_CNT_CC_BUFF register to switch values, if
required.

6. Set the direction of counting by writing to the
UP_DOWN_MODE[17:16] field of the
TCPWM_CNT_CTRL register to configure left-aligned,
right-aligned, or center-aligned PWM, as shown in
Table 18-6.

7. Set the PWM_STOP_ON_KILL and PWM_SYNC_KILL
fields of the TCPWM_CNT_CTRL register as required,
as shown in the Pulse Width Modulation Mode on
page 207.

8. Set the TCPWM_CNT_TR_CTRL0 register to select the
trigger that causes the event (Reload, Start, Kill, Switch,
and Count).

9. Set the TCPWM_CNT_TR_CTRL1 register to select the
edge that causes the event (Reload, Start, Kill, Switch,
and Count).

10. dt_line and dt_line_compl can be controlled by the
TCPWM_CNT_TR_CTRL2 register to set, reset, or
invert upon CC, OV, and UN conditions.

11. If required, set the interrupt upon TC or CC condition, as
shown in Interrupts on page 198.

12. Enable the counter by writing '1' to the corresponding bit
in the COUNTER_ENABLED field of the TCPWM_CTRL
register. A start trigger must be provided through firm-
ware (TCPWM_CMD register) to start the counter if
hardware start signal is not enabled.

PWM, Deadtime insertion

line_out

Dead time duration : 0

dt_line

dt_line_compl

Deadtime duration :

dt_line

dt_line_compl

212 PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

Timer, Counter, and PWM

18.3.6 Pulse Width Modulation Pseudo-Random Mode

This mode uses the linear feedback shift register (LFSR). LFSR is a shift register whose input bit is a linear function of its pre-
vious state.

18.3.6.1 Block Diagram

Figure 18-16. PWM-PR Mode Block Diagram

18.3.6.2 How It Works

The counter register is used to implement LFSR with the polynomial: x16+x14+x13+x11+1, as shown in Figure 18-17. It gener-
ates all the numbers in the range [1, 0xFFFF] in a pseudo-random sequence. Note that the counter register should be initial-
ized with a non-zero value.

Figure 18-17. Pseudo-Random Sequence Generation using Counter Register

The following steps describe the process:

■ The PWM output line, ‘line_out’, is driven with '1' when
the lower 15-bit value of the counter register is smaller
than the value in the compare register (when coun-
ter[14:0] < compare[15:0]). A compare value of ‘0x8000’
or higher always results in a '1' on the PWM output line.
A compare value of ‘0’ always results in a '0' on the
PWM output line.

■ A reload event behaves similar to a start event; however,
it does not initialize the counter.

■ Terminal count is generated when the counter value
equals the period value. LFSR generates a predictable
pattern of counter values for a certain initial value. This
predictability can be used to calculate the counter value
after a certain amount of LFSR iterations ‘n’. This calcu-

PERIOD

LFSR / COUNTER

COMPARE

 BUFFER COMPARE

==

reload

start

stop

switch

CC

TC

counter_clock

BUFFER PERIOD

<
line_out

0

1 0 0 0 0 000 01 1 1 111 1

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B 213

Timer, Counter, and PWM

lated counter value can be used as a period value and
the TC is generated after ‘n’ iterations.

■ At TC, a switch/capture event conditionally switches the
compare and period register pairs (based on the
AUTO_RELOAD_CC and AUTO_RELOAD_PERIOD
fields of the counter control register).

■ A kill event can be programmed to stop the counter as
described in previous sections.

■ One shot mode can be configured by setting the
ONE_SHOT field of the counter control register. At ter-
minal count, the counter is stopped by hardware.

■ In this mode, underflow, overflow, and trigger condition
events do not occur.

■ CC condition occurs when the counter is running and its
value equals compare value. Figure 18-18 illustrates
pseudo-random noise behavior.

■ A compare value of 0x4000 results in 50 percent duty
cycle (only the lower 15 bits of the 16- bit counter are
used to compare with the compare register value).

Figure 18-18. Timing Diagram for Pseudo-Random PWM

A capture/switch input signal may switch the values
between the compare and compare buffer registers and the
period and period buffer registers. This functionality can be
used to modulate between two different compare values
using a trigger input signal to control the modulation.

Note Capture/switch input signal can only be triggered by
an edge (rising, falling, or both). This input signal is remem-
bered until the next terminal count.

18.3.6.3 Configuring Counter for Pseudo-
Random PWM Mode

The steps to configure the counter for pseudo-random PWM
mode of operation and the affected register bits are as fol-
lows.

1. Disable the counter by writing '0' to the corresponding bit
in the COUNTER_ENABLED field of the TCPWM_CTRL
register.

2. Select pseudo-random PWM mode by writing '110' to the
MODE[26:24] field of the TCPWM_CNT_CTRL register.

3. Set the required period (16 bit) in the
TCPWM_CNT_PERIOD register and buffer period value
in the TCPWM_CNT_PERIOD_BUFF register to switch
values, if required.

4. Set the 16-bit compare value in the TCPWM_CNT_CC
register and the buffer compare value in the
TCPWM_CNT_CC_BUFF register to switch values.

5. Set the PWM_STOP_ON_KILL and PWM_SYNC_KILL
fields of the TCPWM_CNT_CTRL register as required.

6. Set the TCPWM_CNT_TR_CTRL0 register to select the
trigger that causes the event (Reload, Start, Kill, and
Switch).

7. Set the TCPWM_CNT_TR_CTRL1 register to select the
edge that causes the event (Reload, Start, Kill, and
Switch).

8. line_out and line_out_compl can be controlled by the
TCPWM_CNT_TR_CTRL2 register to set, reset, or
invert upon CC, OV, and UN conditions.

9. If required, set the interrupt upon TC or CC condition, as
shown in Interrupts on page 198.

10. Enable the counter by writing '1' to the corresponding bit
in the COUNTER_ENABLED field of the TCPWM_CTRL
register.

Pseudo Random PWM

reload event

compare

period

counter

line_out

0x4000

0xACE1

0xACE1 0x5670 0xAB38 0x559C 0x2ACE 0x1567

counter_clock

214 PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

Timer, Counter, and PWM

18.4 TCPWM Registers

Note 'x' in the register name denotes the number of TCPWM. For example, the interrupt mask register for TCPWM0 is
TCPWM_CNT0_INTR_MASK.

Table 18-9. List of TCPWM Registers

Register Comment Features

TCPWM_CTRL TCPWM control register Enables the counter block

TCPWM_CMD TCPWM command register Generates software events

TCPWM_INTR_CAUSE TCPWM counter interrupt cause register Determines the source of the combined interrupt signal

TCPWM_CNTx_CTRL Counter control register
Configures counter mode, encoding modes, one shot
mode, switching, kill feature, dead time, clock prescal-
ing, and counting direction

TCPWM_CNTx_STATUS Counter status register
Reads the direction of counting, dead time duration,
and clock prescaling; checks if counter is running

TCPWM_CNTx_COUNTER Count register Contains the 16-bit counter value

TCPWM_CNTx_CC Counter compare/capture register
Captures the counter value or compares the value with
the counter value

TCPWM_CNTx_CC_BUFF Counter buffered compare/capture register
Buffer register for counter CC register; switches com-
pare value

TCPWM_CNTx_PERIOD Counter period register Contains upper value of the counter

TCPWM_CNTx_PERIOD_BUFF Counter buffered period register
Buffer register for counter period register; switches
period value

TCPWM_CNTx_TR_CTRL0 Counter trigger control register 0 Selects trigger for specific counter events

TCPWM_CNTx_TR_CTRL1 Counter trigger control register 1
Determines edge detection for specific counter input
signals

TCPWM_CNTx_TR_CTRL2 Counter trigger control register 2
Controls counter output lines upon CC, OV, and UN
conditions

TCPWM_CNTx_INTR Interrupt request register
Sets the register bit when TC or CC condition is
detected

TCPWM_CNTx_INTR_SET Interrupt set request register
Sets the corresponding bits in the interrupt request reg-
ister

TCPWM_CNTx_INTR_MASK Interrupt mask register Mask for interrupt request register

TCPWM_CNTx_INTR_MASKED Interrupt masked request register Bit-wise AND of interrupt request and mask registers

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B 215

Section E: Analog System

This section encompasses the following chapter:

■ Precision Reference chapter on page 217

■ SAR ADC chapter on page 221

■ Low-Power Comparator chapter on page 251

■ Continuous Time Block mini (CTBm) chapter on page 257

■ LCD Direct Drive chapter on page 265

■ CapSense chapter on page 277

■ Temperature Sensor chapter on page 287

Top Level Architecture

Analog System Block Diagram

Deep Sleep
Hibernate

Active/Sleep

IO Subsystem

43x GPIO, 14x GPIO_OVT

Peripheral Interconnect (MMIO)PCLK

L
C

D

2x
 L

P
 C

om
pa

ra
to

r

2x
 C

ap
se

ns
e

Port Interface & Digital System Interconnect (DSI)

Power Modes

SMX

SAR ADC
(12-bit)

x1

Programmable
Analog

CTBm
x22x OpAmp

High Speed I/O Matrix

216 PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B 217

19. Precision Reference

PSoC® 4 has a precision reference block, which creates multiple reference bias voltages and currents for the whole chip. This
block is also responsible to provide temperature dependent references to the internal main oscillator (IMO) circuit and the
flash memory block for accurate IMO output frequency and error free flash read/write operations respectively, across temper-
ature range of the device.

19.1 Features

The precision reference block has following features:

■ Bandgap circuit to generate 1.024 V and 2.4 µA references

■ Trim buffer to generate different output voltage levels - 1.2 V, 1.024 V, and 0.8 V with input from the bandgap circuit

■ Multiple fast and slow low-power buffers, which not only enhance the drive capability of various reference outputs, but
also isolate noise from one another

■ Multiple fast and slow current mirror circuits

■ Temperature-dependent voltage reference for flash memory

■ Temperature-dependent current reference for the IMO

19.2 Block Diagram

Figure 19-1 illustrates the block diagram.

The precision reference is mainly composed of these blocks:

■ A precision bandgap block, which generates the precision voltage and current references

■ A trim buffer, which generates different output voltage references for various applications and trims the voltage magnitude
of 1.024-V output

■ A group of fast low-power buffers and slow low-power buffers, which not only enhance the drive capability of various refer-
ence outputs, but also isolate the noise from one another

■ A group of fast leaf cells and slow leaf cells, which create multiple copies of current references in fast and slow domains,
respectively

■ A temperature-controlled voltage generator block for the flash system

■ A temperature-controlled current source for the IMO

218 PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

Precision Reference

Figure 19-1. Voltage Reference Block Diagram

19.3 How it Works

The work principles of the main components are detailed in
this section.

19.3.1 Precision Bandgap

This circuit is the source of all the references generated by
the precision reference block. It provides the second order
curvature corrected 1.024-V voltage reference and 2.4-µA
current reference. The voltage reference is routed to the trim
buffer and the current reference is routed to the current mir-
ror circuits.

19.3.2 Trim Buffer

The trim buffer is an opamp network, which takes input from
the bandgap circuit and generates three different references
(1.2 V, 1.024 V, and 0.8 V). The references are tapped at the
resistor array in the feedback network, resulting in high out-
put impedance. This necessitates use of buffers to drive the
references.

19.3.3 Low-Power Buffers

PSoC 4 has multiple low-power buffers divided into two
groups - fast and slow. These buffers take input from the trim
buffer circuit and drive the destination blocks. The fast buffer
has the capability to reach within 1 percent of the final value
in 9 us. The slow buffer can reach within 40 us. Multiple buf-
fers ensure low reference-line capacitances, which in turn
reduces the settling time. Fast voltage buffers are used for
the references driven to the blocks that are crucial for sys-
tem startup. These include the IMO, flash, low dropout
(LDO) regulator, low voltage detect (LVD), and brownout
detect (BOD) circuit.

The output of the fast buffer is driven to the slow buffer. This
ensures that the extra loading due to the non-startup related
blocks are isolated from those driven by fast buffers. Slow
buffers drive function blocks, such as SAR ADC and
CapSense CSD.

Fast buffers are always enabled along with the bandgap
block; slow buffers can be individually enabled or disabled
by the user using the VREF_EN bits of the
PWR_BG_CONFIG register.

Precision
BandGap

Voltage
Generator

Current
Generator

1.024 V

…

…

GND

Resistor Divider

2.4 uA

Current
Mirrors - slow

Current
Mirrors - fast

0.8 V

1.024 V

Trim
Buffer

M
IR

R
O

R

M
IR

R
O

R
1.2 V

Temperature
Controlled Current

Generator

Temperature
Controlled Voltage

Generator

IMO

Flash
(VCTAT)

2.4 uA

2.4 uA

To Analog
Blocks

LVD

BOD, Flash

SAR

IMO, LDO

Slow Voltage Buffer/
Current Mirror

Fast Voltage Buffer/
Current Mirror

Voltage Buffers

2.4 uA

9.6 uA
(Trimmable)

Temperature
depended Voltage and

Current sources

CSD

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B 219

Precision Reference

19.3.4 Current Mirrors

Current mirror circuits are used to generate multiple copies
of 2.4 µA reference from the bandgap circuit. Similar to volt-
age buffers, there are two types of current mirrors - fast and
slow current mirrors. The fast current mirror circuit has a set-
tling time of 9 us to reach within 1 percent of the final value
and slow current mirror can settle in 40 µs. The fast current
mirrors are used to provide bias to the fast voltage buffers.
The slow current mirror outputs are used to drive the analog
blocks such as SAR, CTBm, CSD, and LPCOMP.

19.3.5 Temperature-Controlled Voltage
Generator

The bias signal generated by this block controls the refer-
ence for flash memory, depending on the temperature. It

receives input from the precision bandgap block. The tem-
perature-dependent voltage reference (VCTAT) compensates

the pump voltage generated in the flash memory block
required for proper read and write operations across the
temperature range of the device.

19.3.6 Temperature-Controlled Current
Generator

This block generates the temperature dependent current
reference for the IMO to maintain its clock frequency within
±2% across the device operating temperature.

19.4 Configuration

During power-up, the precision reference block is initialized with default trim settings saved in the nonvolatile latch (NVL) and
SFLASH. These settings are programmed during manufacturing and no field adjustment is needed.

Table 19-1. Voltage References

Voltage References Buffer Speed Description

1.2 V Fast Reference to the LVD block

1.2 V Slow Reference to the CapSense block

1.024 V Fast Reference to the BOD block

1.024 V Fast Bias reference voltage to the flash block for flash read-out

1.024 V Slow Reference to the SAR ADC block

0.8 V Fast Comparator threshold for relaxation oscillator in the IMO

0.8 V Fast Reference to VCCD and VCCA regulators in the LDO block

VCTAT Fast Temperature dependent voltage reference for flash positive voltage (VPOS) pump

Table 19-2. Current References

Current References Buffer Speed Description

2.4 µA Fast Current reference for LCD drive, BOD, and flash blocks, and bias for fast voltage buffers

2.4 µA Slow
Current reference for analog blocks (SAR, CapSense, IDAC, LPCOMP, and CTBm) and bias
for slow voltage buffers

9.6 µA Fast Current reference for the IMO block with programmable temperature compensation

220 PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

Precision Reference

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B 221

20. SAR ADC

The PSoC® 4 has one successive approximation register analog-to-digital converter (SAR ADC). The SAR ADC is designed
for applications that require moderate resolution and high data rate. It consists of the following blocks (see Figure 20-1):

■ SARMUX

■ SAR ADC core

■ SARREF

■ SARSEQ

The SAR ADC core is a fast 12-bit ADC with sampling rate of 1 Msps in PSoC 4200M and 806 Msps in PSoC 4100M. Preced-
ing the SAR ADC is the SARMUX, which can route external pins and internal signals (AMUXBUS-A/-B, CTBm, temperature
sensor output) to the eight internal channels of SAR ADC. SARREF is used for multiple reference selection. The sequencer
controller SARSEQ is used to control SARMUX and SAR ADC to do an automatic scan on all enabled channels without CPU
intervention and for pre-processing, such as averaging the output data.

The ninth channel is an injection channel that is used by firmware for infrequent and incidental sampling of pins and signals,
for example, the internal temperature sensor.

The result from each channel is double-buffered and a complete scan may be configured to generate an interrupt at the end
of the scan. Alternatively, the data can be routed to programmable digital blocks (UDBs) for further processing without CPU
intervention. The sequencer may also be configured to flag overflow, collision, and saturation errors that can be configured to
assert an interrupt.

For more flexibility, it is also possible to control most analog switches, including those in the SARMUX with the UDBs or firm-
ware. This makes it possible to implement an alternative sequencer with the UDBs or firmware.

20.1 Features
■ Operates across the entire device power supply range

■ Maximum 1 Msps sample rate in PSoC 4200M and 806 Msps in PSoC 4100M

■ Eight individually configurable channels and one injection channel

■ Each channel has the following features:

❐ Input from external pin or internal signal (AMUXBUS/CTBm/temperature sensor)

❐ Programmable acquisition times

❐ Selectable 8-, 10-, and 12-bit resolution

❐ Single-ended or differential measurement

❐ Averaging

❐ Results are double-buffered

❐ Result may be left or right aligned

■ Scan triggered by firmware, timer, pin, or UDB

❐ One shot–periodic or continuous mode

■ Hardware averaging support

❐ First order accumulate

❐ Samples averaging from 2 to 256 (powers of 2)

■ Results represented in 16-bit sign extended values

■ Selectable voltage references

222 PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

SAR ADC

❐ Internal VDDA and VDDA/2 references

❐ Internal 1.024-V reference with buffer

❐ External reference

■ Interrupt generation

❐ Finished scan conversion

❐ Saturation detect and over-range (configurable) detect for every channel

❐ Scan results overflow

❐ Collision detect

■ Configurable injection channel

❐ Triggered by firmware

❐ Can be interleaved between two scan sequences (tailgating)

❐ Selectable sample time, resolution, single-ended or differential, averaging

■ Option to process data in programmable digital blocks to off-load CPU

■ Option to control switches from programmable digital blocks

■ Option to control SAR ADC and switches from programmable digital blocks

❐ Implement an alternative SAR sequencer

❐ Able to achieve 1 Msps

■ Low-power modes

❐ ADC core and reference voltage has low-power mode separately

20.2 Block Diagram
Figure 20-1. Block Diagram

20.3 How it Works
This section includes the following contents:

■ Introduction of each block: SAR ADC core, SARMUX,
SARREF, and SARSEQ

■ SAR ADC system resource: Interrupt, low-power mode,
and SAR ADC status

■ System operation modes

❐ Register mode

❐ DSI mode

■ Configuration examples

20.3.1 SAR ADC Core

PSoC 4 SAR ADC core is a 12-bit SAR ADC. The maximum
sample rate for this ADC is 1 Msps. The SAR ADC core has
the following features:

■ Fully differential architecture; also supports single-ended
mode

■ 12-bit resolution and a selectable alternate resolution:
either 8-bit or 10-bit

■ Programmable acquisition time

■ Programmable power mode (full, one-half, one-quarter)

■ Supports single and continuous conversion mode

AHB, DSI

SARADC

VPLUS

VMINUS

Sequencer

Configure
Registers

SARSEQ

SARREF

Vrefs Ref-bypassCTBm,
AMUXBUS

Data

Control

SARMUX
and Temp

Port with
SARMUX

connectivity

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B 223

SAR ADC

20.3.1.1 Single-ended and Differential Mode

PSoC 4 SAR ADC can operate in single-ended and differen-
tial mode. It is designed in a fully differential architecture,
optimized to provide 12-bit accuracy in the differential mode
of operation. It gives full range output (0 to 4095) for differ-
ential inputs in the range of –VREF to +VREF. SAR ADC can
be configured in single-ended mode by fixing the negative
input. Differential or single-ended mode can be configured
by channel configuration register, SAR_CHANx_CONFIG.

The single-ended mode options of negative input include:
VSSA, VREF, or an external input from any of the eight pins
with SARMUX connectivity. See the device datasheet for
the pin details. This mode is configured by the global config-
uration register SAR_CTRL. When Vminus is connected to
these SARMUX pins, the single-ended mode is equivalent
to differential mode. However, when the odd pin of each dif-
ferential pair is connected to the common alternate ground,
these conversions are 11-bit, because measured signal
value (SARMUX.vplus) cannot go below ground.

To get a single-ended conversion with 12 bits, it is neces-
sary to connect VREF to the negative input of the SAR ADC;
then, the input range can be from 0 to 2 × VREF.

Note that temperature sensor can only be used in single-
ended mode; it will override the SAR_CTRL [11:9] to 0. The
differential conversion is not available for temperature sen-
sors; the result is undefined.

20.3.1.2 Input Range

All inputs should be in the range of VSSA ~VDDA. Input volt-
age range is also limited by VREF. If voltage on negative

input is Vn and the ADC reference is VREF, the range on the
positive input is Vn ± VREF. This criteria applies for both sin-
gle-ended and differential modes.

Note that Vn ± VREF should be in the range of VSSA to VDDA.
For example, if negative input is connected to VSSA, the
range on the positive input is 0 to VREF, not –VREF to VREF.
This is because the signal cannot go below VSSA. Only half
of the ADC range is usable because the positive input signal
cannot swing below VSS, which effectively only generates
an 11-bit result.

20.3.1.3 Result Data Format

Result data format is configurable from two aspects:

■ Singed/unsigned

■ Left/right alignment

When the result is considered signed, the most significant
bit of the conversion is used for sign extension to 16 bits
with MSB. For an unsigned conversion, the result is zero
extended to 16-bits. It can be configured by
SAR_SAMPLE_CTRL [3:2] for differential and single-ended
conversion, respectively.

The sample value can either be right-aligned or left-aligned
within the 16 bits of the result register. By default, data is
right-aligned in data[11:0], with sign extension to 16 bits, if
required. A lower resolution combined with left-alignment
will cause lower significant bits to be made zero.

Combined with signed and unsigned, and left and right
alignment for 12-, 10-, and 8-bit conversion, the result data
format can be shown as follows.

20.3.1.4 Negative Input Selection

The negative input connection choice affects the voltage range, SNR, and effective resolution (Table 20-2). In single-ended
mode, negative input of the SAR ADC can be connected to VSSA, VREF, or any of the eight pins with SARMUX connectivity.

Table 20-1. Result Data Format

Alignment
Signed/

Unsigned
Resolution

Result Register

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Right Unsigned

12 – – – – 11 10 9 8 7 6 5 4 3 2 1 0

10 – – – – – – 9 8 7 6 5 4 3 2 1 0

8 – – – – – – – – 7 6 5 4 3 2 1 0

Right Signed

12 11 11 11 11 11 10 9 8 7 6 5 4 3 2 1 0

10 9 9 9 9 9 9 9 8 7 6 5 4 3 2 1 0

8 7 7 7 7 7 7 7 7 7 6 5 4 3 2 1 0

Left –

12 11 10 9 8 7 6 5 4 3 2 1 0 – – – –

10 9 8 7 6 5 4 3 2 1 0 – – – – – –

8 7 6 5 4 3 2 1 0 – – – – – – – –

224 PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

SAR ADC

To get a single-ended conversion with 12-bits, it is neces-
sary to connect VREF to the negative input of the SAR ADC;
then, the input range can be from 0 to 2 × VREF.

Note that single-ended conversions with Vminus connected
to the pins with SARMUX connectivity are electrically equiv-
alent to differential mode. However, when the odd pin of
each differential pair is connected to the common alternate
ground, these conversions are 11-bit, because measured
signal value (SARMUX.vplus) cannot go below ground.

20.3.1.5 Resolution

PSoC 4 supports 12-bit resolution (default) and a selectable
alternate resolution: either 8-bit or 10-bit for each channel.

Resolution affects conversion time:

Conversion time (sar_clk) = resolution (bit) + 2

Total acquisition and conversion time (sar_clk) = acquisi-
tion time + resolution (bit) + 2

For 12-bit conversion and acquisition time = 4, 18 sar_clk is
required. For example, if sar_clk is 18 MHz, 18 sar_clk is
required for conversion and you will get 1 Msps conversion
rate. Lower resolution results in higher conversion rate.

20.3.1.6 Acquisition Time

Acquisition time is the time taken by sample and hold (S/H)
circuit inside SAR ADC to settle. After acquisition time, the
input signal source is disconnected from the SARADC core,
and the output of the S/H circuit will be used for conversion.
Each channel can select one from four acquisition time
options, from 4 to 1023 SAR clock cycles defined in global
configuration registers SAR_SAMPLE_TIME01 and
SAR_SAMPLE_TIME23.

Figure 20-2. Acquisition Time

Table 20-2. Negative Input Selection Comparison

Single-ended/
Differential

Signed/Unsigned
SARMUX
Vminus

SARMUX
 Vplus Range

Result Register Maximum SNR

Single-ended N/Aa

a. For single-ended mode with Vminus connected to VSSA, conversions are effectively 11-bit because voltages cannot swing below VSSA on any PSoC 4 pin.
Because of this, the global configuration bit SINGLE_ENDED_SIGNED (SAR_SAMPLE_CTRL[2]) will be ignored and the result is always (0x000-0x7FF).

VSSA
+VREF

VSSA = 0

0x7FF

0x000
Better

Single-ended Unsigned VREF

+2 × VREF

VREF

VSSA = 0

0xFFF

0x800

0

Good

Single-ended Signed VREF

+2 × VREF

VREF

VSSA = 0

0x7FF

0x000

0x800

Good

Single-ended Unsigned Vx

Vx + VREF

Vx

Vx – VREF

0xFFF

0x800

0

Best

Single-ended Signed Vx

Vx + VREF

Vx

Vx – VREF

0x7FF

0x000

0x800

Best

differential Unsigned Vx

Vx + VREF

Vx

Vx – VREF

0xFFF

0x800

0

Best

differential Signed Vx

Vx + VREF

Vx

Vx – VREF

0x7FF

0x000

0x800

Best

+

-

DAC

SAR
Logic

RSW1RSW2

CSHOLD

SWACQ

DC

RSRC

Inside PSoC4

Signal
Source

Inside PSoC4

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B 225

SAR ADC

The acquisition time should be sufficient to charge the inter-
nal hold capacitor of the ADC through the resistance of the
routing path, as shown in Figure 20-2. The recommended
value of acquisition time is:

tACQ >= 9 × (RSCR + RSW2 + RSW1) × CSH

Where:

CSH ~= 10 pF

RSW2 + RSW1 = ~ 500 to 1000 ohms, depending on the rout-
ing path (See Analog Routing on page 226 for details).

RSRC = series resistance of the signal source

20.3.1.7 SAR ADC Clock

SAR ADC clock frequency must be between 1 MHz and
18 MHz for PSoC 4200M and 1 MHz to 14.5 MHz for PSoC
4100M, which comes from the IMO via a clock divider. Note
that a fractional divider is not supported for SAR ADC. To
get a 1-Msps sample rate in PSoC 4200M, an 18-MHz SAR

ADC clock is required. To achieve this, the system clock
(IMO) must be set to 36 MHz rather than 48 MHz. To get a
806-ksps sample rate for the PSoC 410041xx-BL4100M
device, IMO must be set to 29 MHz. A 12-bit ADC conver-
sion with the default acquisition time of four clocks requires
18 clocks in which to complete. A 10-bit and 8-bit conversion
requires 16 and 14 clocks respectively.

20.3.1.8 SAR ADC Timing

As Figure 20-3 shows, there is a sar_clk delay before rais-
ing start-of-conversion (SOC). A 12-bit resolution conver-
sion needs 14 clocks (one bit needs one sar_clk, plus two
excess sar_clk for G and F state). With acquisition time
equal to four sar_clk cycles by default, 18 clock sar_clk
cycles are required for total ADC acquisition and conver-
sion. After sample (acquisition), it will output the next pulse
(or dsi_sample_done), the SARMUX can route to other pin
and signal, it will be done automatically with sequencer con-
trol (see SARSEQ on page 232 for details).

Figure 20-3. SAR ADC Timing

20.3.2 SARMUX

SARMUX is an analog dedicated programmable multiplexer.
The main features of SARMUX are:

■ Switch on resistance: 600  (maximum)

■ Internal temperature sensor

■ Controlled by sequencer controller block (SARSEQ),
firmware, or UDBs.

■ Charge pump inside:

❐ If VDDA < 4.0 V, charge pump should be turned on to

reduce switch resistance

❐ If VDDA >= 4.0 V, charge pump is turned off and

delivers VDDA as its output

■ Multiple inputs:

❐ Analog signals from pins (port 2)

❐ Temperature sensor output

❐ CTBm output via sarbus0/1 (not fast enough to sam-
ple at 1 Msps)

❐ AMUXBUS_A/B (not fast enough to sample at
1 Msps)

F FSAMPLE SAMPLES1S2S3S4S5S6S7S8S9S10S11S12 S1S2S3S4S5S6

SOC

Data Data

S7S8S9S10G S11S12G* SAMPLE

SARADC CLK

DSI trigger

sample

State

EOC

Next

Data_out

18 sar_clk cycles

226 PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

SAR ADC

20.3.2.1 Analog Routing

SARMUX has many switches that may be controlled by
SARSEQ block (sequencer controller), firmware, or the DSI.
Sequencer and DSI are the hardware control method, which

can be masked by the hardware control bit in the register,
SAR_MUX_SWITCH_HW_CTRL. Different control meth-
ods have different control capability on the switches. See
Figure 20-4.

Figure 20-4. SARMUX Switches and Control Capability

Sequencer control: The switches are controlled by the
sequencer in SARSEQ block. After configuring each chan-
nel's analog routing, it enables multi-channel automatic scan
in a round-robin fashion, without CPU intervention. Not
every switch can be controlled by the sequencer; see
Figure 20-4. The corresponding registers are:
SAR_CHANx_CONFIG, SAR_MUX_SWITCH0,
SAR_CTRL, and SAR_MUX_SWITCH_HW_CTRL. The
detailed configuration is available in register mode; see
Firmware Analog Routing on page 243.

Firmware control: Programmable registers directly define
the VPLUS/VMINUS connection. It can control every switch
in SARMUX; see Figure 20-4. For example, in firmware con-
trol, it is possible to do a differential measurement between
any two pins or signals, not just two adjacent pins (as in
sequencer control). However, it needs CPU intervention for
multi-channel acquisition. The corresponding registers are:
SAR_MUX_SWITCH0, SAR_MUX_SWITCH_HW_CTRL.

and SAR_CTRL. The detailed configuration is available in
register mode; see Firmware Analog Routing on page 243.

DSI control: Switches are controlled by DSI signals from
the UDB, which can act as a secondary sequencer with a
customized logic design. DSI can control most switches.
Thus, it can do a differential measurement between any two
pins and signals and firmware control. The detailed configu-
ration is available in DSI mode; see SARMUX Analog Rout-
ing on page 239.

20.3.2.2 Analog Interconnection

PSoC 4 analog interconnection is very flexible. SAR ADC
can be connected to multiple inputs via SARMUX, including
both external pins and internal signals. For example, it can
connect to a neighboring block such as CTBm. It can also
connect to other pins except port 2 through AMUXBUS_A/B,
at the expense of scanning performance (more parasitic

P
1[

7]
P

1[
6]

P
1[

5]

P
1[

4]

P
1[

3]

P
1[

2]

P
1[

1]

P
1[

0]

LPCOMP1
vminus

vplus

C
S

ID
A

C
1iout

C
S

ID
A

C
0iout

SARADC0
vplus

vminus

ext_vref

C
S

D
0

source
shield

csh
cm

od

+-

~

1x 10
x

+ -

~

1x10
x

CTBm

SAR

OA1 OA0

TEMP0
temp

Vssa_kelvin

CAPSENSE

Firmware Only

Firmware + DSI
Firmware + DSI +
SAR-Sequencer

AMUXBUS_A
AMUXBUS_B

Switch Control Legend

Comp out to DSI Comp out to DSI

sarbus0
sarbus1

P
5[

5]

P
5[

4]

P
5[

3]

P
5[

2]

P
5[

1]

P
5[

0]

+-

~

1x 10
x

+ -

~

1x10
x

CTBm

OA3 OA2

Comp out to DSI Comp out to DSI

P
2

[7]

P
2

[6]

P
2

[5]

P
2

[4]

P
2

[3]

P
2

[2]

P
2

[1]

P
2

[0]

P0[7]

P0[6]

P0[5]

P0[4]

P0[3]

P0[2]

P0[1]

P0[0]

LPCOMP0
vminus

vplus

P
4

[1]

P
4

[0]

P
4

[3]

P
4

[2]

LPCOMP

P
4

[5]

P
4

[4]

P
4[7

]

P
4[6

]

CSIDAC2
iout

CSIDAC3
iout

CSD1

source
shield

csh
cmod

P7[2]

P7[1]

P7[0]

P6[5]

P6[4]

P6[3]

P6[2]

P6[1]

P6[0]

P
3[1]

P
3[0]

P
3

[3]

P
3

[2]

P
3

[5]

P
3

[4]

P
3

[7]

P
3

[6]

C
A

P
S

E
N

S
E

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B 227

SAR ADC

coupling, longer RC time to settle).

Several cases are discussed here to provide a better under-
standing of analog interconnection.

Input from External Pins

Figure 20-5 shows how two GPIOs that support SARMUX

are connected to SAR ADC as a differential pair (Vpuls/Vmi-
nus) via switches. These two switches can be controlled by
sequencer, firmware, or DSI. The pins are arranged in adja-
cent pairs; for example, in SARMUX port P2[0] and P2[1],
P2[2] and P2[3], and so on. If you need to use pins that are
not paired as a differential pair, such as P2[1] and P2[2], the
sequencer does not work; use firmware or DSI.

Figure 20-5. Input from External Pins

P
1
[7
]

P
1[

6]

P
1[

5]
P

1[
4]

P
1[

3]
P

1[
2]

P
1[

1]

P
1[

0]

LPCOMP1
vminus

vplus

C
S

ID
A

C
1io
u
t

C
S

ID
A

C
0io
u
t

SARADC0
vplus

vminus

ext_vref

C
S

D
0so
u
rce

sh
ield

csh
cm

o
d

+‐

~

1
x

10
x

+ ‐

~

1
x

10
x

CTBm

SAR

OA1 OA0

TEMP0
temp

Vssa_kelvin

CAPSENSE

AMUXBUS_A
AMUXBUS_B

Comp out to DSI Comp out to DSI

sarbus0

sarbus1

P
5[

5]

P
5[

4]
P

5[
3]

P
5[

2]
P

5[
1]

P
5[

0]

+‐

~

1
x

10
x

+ ‐

~

1
x

10
x

CTBm

OA3 OA2

Comp out to DSI Comp out to DSI

P
2

[7]

P
2

[6]
P

2
[5]

P
2

[4]
P

2
[3]

P
2

[2]

P
2[1

]

P
2[0

]

P0[7]

P0[6]

P0[5]

P0[4]
P0[3]

P0[2]

P0[1]
P0[0]

LPCOMP0
vminus

vplus

P
4[1]

P
4[0]

P
4[3]

P
4[2]

LPCOMP

P
4

[5]

P
4

[4]

P
4[7

]

P
4[6

]

CSIDAC2
iout

CSIDAC3
iout

CSD1

source

shield

csh
cmod

P7[2]
P7[1]

P7[0]

P6[5]

P6[4]

P6[3]

P6[2]
P6[1]

P6[0]

P
3[1]

P
3[0]

P
3

[3]

P
3

[2]

P
3

[5]

P
3

[4]

P
3

[7]
P

3
[6]

C
A
P
SE
N
SE

Switch Closed

Switch Sequenced/Controlled from FW/UDB

Switch Open or don’t care

Legend

Analog route used

Analog route not used

228 PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

SAR ADC

Input from Analog Bus (AMUXBUS_A/B)

Figure 20-6 shows how two pins that do not support SARMUX connectivity are connected to ADC as a differential pair. Addi-
tional switches must connect these to two pins: AMUXBUS_A and AMUX-BUS_B, and then connect AMUXBUS_A and
AMUXBUS_B to ADC.

The additional switches reduce the scanning performance (more parasitic coupling, longer RC time to settle) – it is not fast
enough to sample at 1 Msps. This is not recommended for external signals; the dedicated SARMUX port should be used, if
possible.

Figure 20-6. Input from Analog Bus
P
1
[7
]

P
1[

6]

P
1[

5]
P

1[
4]

P
1[

3]
P

1[
2]

P
1
[1
]

P
1
[0
]

LPCOMP1
vminus

vplus

C
S

ID
A

C
1io
u
t

C
S

ID
A

C
0io
u
t

SARADC0
vplus

vminus

ext_vref

C
S

D
0so
u
rce

sh
ield

csh
cm

o
d

+‐

~

1
x

1
0
x

+ ‐

~

1
x

1
0
x

CTBm

SAR

OA1 OA0

TEMP0
temp

Vssa_kelvin

CAPSENSE

AMUXBUS_A
AMUXBUS_B

Comp out to DSI Comp out to DSI

sarbus0

sarbus1

P
5[

5]

P
5[

4]
P

5[
3]

P
5[

2]
P

5[
1]

P
5[

0]
+‐

~

1
x

1
0
x

+ ‐

~

1
x

1
0
x

CTBm

OA3 OA2

Comp out to DSI Comp out to DSI

P
2

[7]

P
2

[6]
P

2
[5]

P
2

[4]
P

2
[3]

P
2

[2]

P
2[1

]

P
2[0

]

P0[7]
P0[6]

P0[5]
P0[4]

P0[3]

P0[2]
P0[1]

P0[0]

LPCOMP0
vminus

vplus

P
4[1]

P
4[0]

P
4[3]

P
4[2]

LPCOMP

P
4

[5]

P
4

[4]

P
4[7

]

P
4[6

]

CSIDAC2
iout

CSIDAC3
iout

CSD1

source

shield

csh
cmod

P7[2]
P7[1]

P7[0]

P6[5]
P6[4]

P6[3]
P6[2]

P6[1]

P6[0]

P
3[1]

P
3[0]

P
3

[3]

P
3

[2]

P
3

[5]

P
3

[4]

P
3

[7]
P

3
[6]

C
A
P
SE
N
SE

Switch Closed

Switch Sequenced/Controlled from FW/UDB

Switch Open or don’t care

Legend

Analog route used

Analog route not used

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B 229

SAR ADC

Input from CTBm Output via sarbus

SAR ADC can be connected to CTBm output via sarbus 0/1. Figure 20-7 shows how to connect an opamp (configured as a
follower) output to a single-ended SAR ADC. Negative terminal is connected to VREF. Figure 20-8 shows how to connect two
opamp outputs to SAR ADC as a differential pair. It must connect opamp output to sarbus 0/1, then connect SAR ADC input
to sarbus 0/1. Because there are also additional switches, it is not fast enough to sample at 1 Msps. However, the on-chip
opamps add value for many applications.

Figure 20-7. Input from CTBm Output via sarbus

P
1
[7
]

P
1[

6]

P
1[

5]

P
1[

4]

P
1[

3]

P
1[

2]

P
1
[1
]

P
1
[0
]

L P C O M P 1
v m in u s

v p lu s

C
S

ID
A

C
1io
u
t

C
S

ID
A

C
0io
u
t

S A R A D C 0
v p lu s

v m in u s

e x t _ v re f

C
S

D
0so
u
rce

sh
ield

csh

cm
o
d

+‐

~

1
x

1
0
x

+ ‐

~

1
x

1
0
x

C T B m

S A R

O A 1 O A 0

T E M P 0
t e m p

V s s a _ k e lv in

C A P S E N S E

A M U X B U S _ A
A M U X B U S _ B

C om p o u t t o D S I C o m p o u t t o D S I

s a rb u s 0

s a rb u s 1

P
5[

5]

P
5[

4]

P
5[

3]

P
5[

2]

P
5[

1]

P
5[

0]

+‐

~

1
x

1
0
x

+ ‐

~

1
x

1
0
x

C T B m

O A 3 O A 2

C om p o u t t o D S I C o m p o u t t o D S I

P
2

[7]

P
2

[6]

P
2

[5]

P
2

[4]

P
2

[3]

P
2

[2]

P
2
[1
]

P
2
[0
]

P 0 [7]
P 0 [6]

P 0 [5]

P 0 [4]
P 0 [3]

P 0 [2]
P 0 [1]
P 0 [0]

L P C O M P 0
v m in u s

v p lu s

P
4

[1]

P
4

[0]

P
4

[3]

P
4

[2]

L P C O M P

P
4

[5]

P
4

[4]

P
4[7

]

P
4[6

]

C S ID A C 2
io u t

C S ID A C 3
io u t

C S D 1

s o u r c e

s h ie ld

c s h

cm o d

P 7 [2]
P 7 [1]

P 7 [0]

P 6 [5]
P 6 [4]

P 6 [3]

P 6 [2]
P 6 [1]

P 6 [0]

P
3

[1]

P
3

[0]

P
3

[3]

P
3

[2]

P
3

[5]

P
3

[4]

P
3

[7]

P
3

[6]

C
A
P
SE
N
SE

S w itc h C lo s e d

S w itc h S e q u e n c e d /C o n t ro l le d f r o m F W /U D B

S w itc h O p e n o r d o n ’t c a re

L e g e n d

A n a lo g ro u te u s e d

A n a lo g ro u te n o t u s e d

230 PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

SAR ADC

Figure 20-8. Inputs from CTBm Output via sarbus0 and sarbus1

P
1
[7
]

P
1[

6]

P
1
[5
]

P
1
[4
]

P
1
[3
]

P
1
[2
]

P
1
[1
]

P
1
[0
]

L P C O M P 1
v m in u s

v p lu s

C
S

ID
A

C
1io
u
t

C
S

ID
A

C
0io
u
t

S A R A D C 0
v p lu s

v m in u s

e x t_ v re f

C
S

D
0so
u
rce

sh
ield

csh

cm
o
d

+‐

~

1
x

1
0
x

+ ‐

~

1
x

1
0
x

C T B m

S A R

O A 1 O A 0

T E M P 0
te m p

V s s a _ k e lv in

C A P S E N S E

A M U X B U S _ A
A M U X B U S _ B

C om p o u t t o D S I C o m p o u t to D S I

s a rb u s 0

s a rb u s 1

P
5[

5]

P
5[

4]

P
5[

3]

P
5[

2]

P
5[

1]

P
5[

0]

+‐

~

1
x

1
0
x

+ ‐

~

1
x

1
0
x

C T B m

O A 3 O A 2

C om p o u t t o D S I C o m p o u t t o D S I

P
2

[7]

P
2

[6]

P
2

[5]

P
2

[4]

P
2

[3]

P
2

[2]

P
2
[1
]

P
2
[0
]

P 0 [7]
P 0 [6]

P 0 [5]
P 0 [4]

P 0 [3]

P 0 [2]

P 0 [1]
P 0 [0]

L P C O M P 0
v m in u s

v p lu s
P

4
[1]

P
4

[0]

P
4

[3]

P
4

[2]

L P C O M P

P
4

[5]

P
4

[4]

P
4[7

]

P
4[6

]

C S ID A C 2
io u t

C S ID A C 3
io u t

C S D 1

s o u r c e

s h ie ld

c s h

cm o d

P 7 [2]
P 7 [1]

P 7 [0]

P 6 [5]

P 6 [4]

P 6 [3]

P 6 [2]
P 6 [1]

P 6 [0]

P
3

[1]

P
3

[0]

P
3

[3]

P
3

[2]

P
3

[5]

P
3

[4]

P
3

[7]

P
3

[6]

C
A
P
SE
N
SE

S w itc h C lo s e d

S w itc h S e q u e n c e d /C o n t ro l le d fr o m F W /U D B

S w itc h O p e n o r d o n ’t c a re

L e g e n d

A n a lo g ro u te u s e d

A n a lo g ro u te n o t u s e d

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B 231

SAR ADC

Input from Temperature Sensor

One on-chip temperature sensor is available for temperature sensing and temperature-based calibration. Note for tempera-
ture sensor, differential conversions are not available (conversion result is undefined), thus always use it in singled-ended
mode. Reference is from internal 1.024 V.

As Figure 20-9 shows, temperature sensor can be routed to positive input of SAR ADC via switch, which can be controlled by
sequencer, firmware, or DSI. Setting the MUX_FW_TEMP_VPLUS bit (SAR_MUX_SWITCH0[17]) can enable the tempera-
ture sensor and connect its output to VPLUS of SAR ADC; clearing this bit will disable temperature sensor by cutting its bias
current.

Figure 20-9. Inputs from Temperature Sensor

20.3.3 SARREF

The main features of SARREF are:

■ Reference options: VDDA, VDDA/2, 1.024-V bandgap (±1 percent), external reference

■ Reference buffer + bypass cap to enhance internal reference drive capability

Figure 20-10. SARREF Block Diagram

P
1
[7
]

P
1[

6]

P
1[

5]

P
1[

4]

P
1[

3]

P
1[

2]

P
1[

1]

P
1[

0]

L P C O M P 1
v m in u s

v p lu s

C
S

ID
A

C
1io
u
t

C
S

ID
A

C
0io
u
t

S A R A D C 0
v p lu s

v m in u s

e x t _ v re f

C
S

D
0so
u
rce

sh
ield

csh

cm
o
d

+‐

~

1
x

1
0
x

+ ‐

~

1
x

1
0
x

C T B m

S A R

O A 1 O A 0

T EM P 0
te m p

V s s a _ k e lv in

C A P S E N S E

A M U X B U S _ A
A M U X B U S _ B

C om p o u t t o D S I C o m p o u t t o D S I

s a rb u s 0

s a rb u s 1

P
5[

5]

P
5[

4]

P
5[

3]

P
5[

2]

P
5[

1]

P
5[

0]

+‐

~

1
x

1
0
x

+ ‐

~

1
x

1
0
x

C T B m

O A 3 O A 2

C om p o u t t o D S I C o m p o u t t o D S I

P
2

[7]

P
2

[6]

P
2

[5]

P
2

[4]

P
2

[3]

P
2

[2]

P
2
[1
]

P
2
[0
]

P 0 [7]
P 0 [6]

P 0 [5]

P 0 [4]
P 0 [3]

P 0 [2]
P 0 [1]
P 0 [0]

L P C O M P 0
v m in u s

v p lu s

P
4

[1]

P
4

[0]

P
4

[3]

P
4

[2]

L P C O M P

P
4

[5]

P
4

[4]

P
4[7

]

P
4[6

]

C S ID A C 2
io u t

C S ID A C 3
io u t

C S D 1

s o u r c e

s h ie ld

c s h

cm o d

P 7 [2]
P 7 [1]

P 7 [0]

P 6 [5]
P 6 [4]

P 6 [3]

P 6 [2]
P 6 [1]

P 6 [0]

P
3

[1]

P
3

[0]

P
3

[3]

P
3

[2]

P
3

[5]

P
3

[4]

P
3

[7]

P
3

[6]

C
A
P
SE
N
SE

S w itc h C lo s e d

S w itc h S e q u e n c e d /C o n t ro l le d f r o m F W /U D B

S w itc h O p e n o r d o n ’t c a re

L e g e n d

A n a lo g ro u te u s e d

A n a lo g ro u te n o t u s e d

S
A

R
R

E
F

M
U

X

Reference
 buffer

Vref_ext /
bypass cap

VDD

VDD/2B
an

d
g

ap

Internal 1.024V Vref

SARREF

Vref for
SAR ADC

core

232 PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

SAR ADC

20.3.3.1 Reference Options

The reference voltage selection for the SAR ADC consists of
a reference mux and switches inside the SARREF. The
selection allows connecting VDDA, VDDA/2, and 1.024-V
internal reference from a bandgap or an external VREF con-
nected to an Ext Vref/SAR bypass pin (see the device data-
sheet for details). The control for the reference mux in
SARREF is in the global configuration register SAR_CTRL
[6:4].

20.3.3.2 Bypass Capacitors

The internal references, 1.024 V from bandgap or VDDA/2
are buffered with the reference buffer. This reference may

be routed to the Ext Vref/SAR bypass pin where an external
capacitor can be used to filter internal noise that may exist
on the reference signal.

The SAR ADC sample rate cannot exceed 100 ksps without
an external reference bypass capacitor. For example, with-
out a bypass capacitor and with 1.024-V internal VREF, the
maximum SAR ADC clock frequency is 1.6 MHz. When
using an external reference, it is recommended that an
external capacitor is used. Bypass capacitors can be
enabled by setting SAR_CTRL [7].

Table 20-3 lists different reference modes and its maximum
frequency/sample rate for 12-bit continuous mode operation
in PSoC 4200M.

1.024-V internal VREF startup time varies with the different
bypass capacitor size, Table 20-4 lists two common values
for the bypass capacitor and its startup time specification. If
reference selection is changed between scans, make sure
the 1.024-V internal VREF is settled when SAR ADC starts
sampling.

20.3.3.3 Input Range versus Reference

All inputs should be between VSSA and VDDA. The ADCs
input range is limited by VREF selection. If negative input is
Vn and the ADC reference is VREF, the range on the positive
input is Vn ± VREF. This criteria applies for both single-ended
and differential modes as long as both negative and positive
inputs stay within VSSA to VDDA.

20.3.4 SARSEQ

SARSEQ is a dedicated sequencer controller that automati-
cally sequences the input mux from one channel to the next
while placing the result in an array of registers, one per
channel.

■ Control SARMUX analog routing automatically without
CPU intervention

■ Control SAR ADC core (such as resolution, acquisition
time, and reference)

■ Receive data from SAR ADC and pre-process (average,
range detect)

■ Results are double-buffered so the CPU can safely read
the results of the last scan while the next scan is in prog-
ress.

The features of SARSEQ are:

■ Eight channels can be individually enabled as an auto-
matic scan without CPU intervention

■ A ninth channel (injection channel) for infrequent signal
to insert in an automatic scan

■ Each channel has the following features:

❐ Input from external pin or internal signal (AMUXBUS/
CTBm/temperature sensor)

❐ Up to four programmable acquisition time

❐ Default 12-bit resolution, selectable alternate resolu-
tion: either 8-bit or 10-bit

❐ Single-ended or differential mode

❐ Result averaging

■ Scan triggering

❐ One shot, periodic, or continuous mode

❐ Triggered by any digital signal or input from GPIO pin

❐ Triggered by internal UDB of fixed-function block

Table 20-3. Reference Modes

Reference Mode
Reference

SAR_CTRL [6:4]
Bypass Cap

SAR_CTRL[7]
Buffer

Max
Frequency

Max Sample
Rate

1.024 V internal VREF without bypass cap 4 0 Yes 1.6 MHz 100 ksps

1.024 V internal VREF with bypass cap 4 1 Yes 18 MHz 1 Msps

External VREF 5 X No 18 MHz 1 Msps

VDDA/2 without bypass cap 6 0 Yes 1.6 MHz 100 ksps

VDDA/2 with bypass cap 6 1 Yes 18 MHz 1 Msps

VDDA 7 X No 9 MHz 500 ksps

Table 20-4. Bypass Capacitor Values

Internal VREF Startup Time Maximum
Specification

Startup time for reference with external
capacitor (1 uF)

2 ms

Startup time for reference with external
capacitor (100 nF)

200 µs

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B 233

SAR ADC

❐ Software triggered

■ Hardware averaging support

❐ First order accumulate

❐ From 2 to 256 samples averaging (powers of 2)

❐ Results in 16-bit representation

■ Double buffering of output data

❐ Left or right adjusted results

❐ Results in working register and result register

■ Interrupt generation

❐ Finished scan conversion

❐ Channel saturation detect in all control modes

❐ Over range (configurable) detect for every channel

❐ Scan results overflow

❐ Collision detect

■ Configurable injection channel

❐ Triggered by firmware

❐ Can be interleaved between two scan sequences
(tailgating)

❐ Selectable sample time, resolution, single ended, or
differential, averaging

Figure 20-11. SARSEQ Block Diagram

20.3.4.1 Averaging

The SARSEQ block has a 20-bit accumulator and shift reg-
ister to implement averaging. Averaging is after signed
extension. The global configuration SAR_SAMPLE_CTRL
register specifies the details of averaging.

In register control mode, channel configuration
SAR_CHAN_CONFIG register has an enable bit (AVG_EN)
to enable averaging. In DSI control mode, average is
enabled by dsi_cfg_average signal.

In global configuration, AVG_CNT (SAR_SMAPLE_CTRL
[6:4]) specifies the number of samples (N) according to this
formula:

N=2^(AVG_CNT+1) N range = [2..256]

For example, if AVG_CNT (SAR_SMAPLE_CTRL [6:4]) = 3,
then N = 16.

AVG_SHIFT bit (SAR_SAMPLE_CTRL[7]) is used to shift
the result to get averaged; it should be set if averaging is
enabled.

If a channel is configured for averaging, the SARSEQ will
take N consecutive samples of the specified channel in
every scan. Because the conversion result is 12-bit and the
maximum value of N is 256 (left shift 8 bits), the 20-bit accu-
mulator will never overflow.

If AVG_SHIFT in SAR_SAMPLE_CTRL register is set, SAR
sequencer performs sign extension and then accumulation.
The accumulated result is shifted right AVG_CNT + 1 bits to
get averaged. If it is not, the result is forced to shift right to
ensure it fits in 16 bits. Right shift is done by maximum (0,
AVG_CNT-3) – if the number of samples is more than 16
(AVG_CNT >3), then the accumulation result is shifted right
AVG_CNT-3bits; it AVG_CNT<3, the result is not shifted.
Note in this case, the average result is bigger than

Sequencer logic
& state machine

CHAN_RESULT0

CHAN_RESULT7

INJ_CHAN_RESULT

STATUS

RANGE_COND

RANGE_THRES

S
A

R
M

U
X

P
o

rt
 w

it
h

 S
A

R
M

U
X

co

n
n

ec
ti

vi
ty

?
?
?

AMUXBUS_A/_B

sarbus 0/1

Temperature Sensor

Accumulate/Average
/Align/Sign extended

INTR_MASK

INTR

SARADC

Saturation
Detect

<
=
>

sa
r_

d
si

_d
at

a[
]

AHB BUS interface
SARSEQ

saturate_intr

ra
n

g
e_

in
tr

eo
s/

co
lli

si
o

n
/o

ve
rf

lo
w

_i
n

tr

sa
r_

in
te

rr
u

p
t

?
?
?

VPLUS

VMINUS

D
S

I i
n

p
u

t
fr

o
m

 U
D

B

D
S

I o
u

tp
u

t
to

 U
D

B

Configuration
Registers

Result Registers

SARREF

Reference Voltage Pin

234 PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

SAR ADC

expected; it is recommended to set AVG_SHIFT. This mode
always uses the selected resolution of ADC (12, 10, or 8
bits).

20.3.4.2 Range Detection

The SARSEQ supports range detection to allow automatic
detection of result values compared to two programmable
thresholds without CPU involvement. Range detection is
defined by the SAR_RANGE_THRES register. The
RANGE_LOW field (SAR_RANGE_THRES [15:0]) value
defines the lower threshold and RANGE_HIGH field
(SAR_RANGE_THRES [31:16]) defines the upper threshold
of the range.

The SAR_RANGE_COND bits define the condition that trig-
gers a channel maskable range detect interrupt
(RANGE_INTR). The following conditions can be selected:

0: result < RANGE_LOW (below range)

1: RANGE_LOW  result < RANGE_HIGH (inside range)

2: RANGE_HIGH  result (above range)

3: result <RANGE_LOW || RANGE_HIGH <= result (outside
range)

See Range Detection Interrupts on page 236 for details.

20.3.4.3 Double Buffer

Double buffering is used so that firmware can read the
results of a complete scan while the next scan is in prog-
ress. The SAR ADC results are written to a set of working
registers until the scan is complete, at which time the data is
copied to a second set of registers where the data can be
read by the user's application. This allows sufficient time for
the firmware to read the previous scan before the present
scan is completed. All input channels are double buffered
with 16 registers, except the injection channel. The injection
channel is not required to be doubled buffered because it is
not normally part of a normal channel scan.

20.3.4.4 Injection Channel

The injection channel is similar to the other channels, with
the exception that it is not part of a regular scan. The injec-
tion channel is used for incidental or rare conversions; for
example, sampling the temperature sensor every two sec-
onds. Note that if SAR is operating in continuous mode,
enabling the injection channel will change the sample rate.

The injection channel can only be controlled by the firmware
with a firmware trigger (one-shot). This means the injection
channel does not support continuous or DSI trigger. It also
does not support output of its data or interrupt to the DSI
bus. Because the only trigger is one-shot, there is no need
for double buffering or an overflow interrupt.

The conversions for the injection channel can be configured
in the same way as the regular channels by setting
SAR_INJ_CHAN_CONFIG register, it supports:

■ Pin or signal selection

■ Single-ended or differential selection

■ Choice of resolution between 12-bit or the globally spec-
ified SUB_RESOLUTION

■ Sample time select from one of the four globally speci-
fied sample times

■ Averaging select

It supports the same interrupts as the regular channel
except the overflow interrupt.

■ Maskable end-of-conversion interrupt INJ_EOC_INTR

■ Maskable range detect interrupt INJ_RANGE_INTR

■ Maskable saturation detect interrupt
INJ_SATURATE_INTR

■ Maskable collision interrupt INJ_COLLISION_INTR

SAR_INTR, SAR_INTR_MASK, SAR_INTR_MASKED, and
SAR_INTR_SET are the corresponding registers.

These features are described in detail in Global SARSEQ
Configuration on page 240, Channel Configurations on
page 241, and Interrupt on page 236.

Tailgating

The injection channel conversion can be triggered by setting
the start or enable bit INJ_START_EN
(SAR_INJ_CHAN_CONFIG [31]). If there is an ongoing
scan, it is recommended to select tailgating by setting
INJ_TAILGATING=1 (SAR_INJ_CHAN_CONFIG [30]). The
injection channel will be scanned at the end of the ongoing
scan of regular channels without any collision. However, if
there is no ongoing scan or the SAR ADC is idle, and tailgat-
ing is selected, INJ_START_EN will enable the injection
channel to be scanned at the end of the next scan of regular
channels. In this case, tailgating is not necessary.

If tailgating is not selected, the injection channel will also be
scanned at the end of the ongoing scan of regular channels,
but it will cause a collision and generate a collision interrupt
(INJ_COLLISION_INTR). Another potential problem without
tailgating is that it can cause the next scan of the regular
channels to collide with the injection channel conversion
(FW/DSI_COLLISION_INTR is raised). The regular scan is
postponed until the injection scan is finished, thus causing
jitter on a regular scan. Note that continuous trigger and DSI
trigger level mode will never trigger a collision interrupt.

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B 235

SAR ADC

Figure 20-12. Injection Channel Flow Chart

The disadvantage of tailgating is that it may be a long time before the next trigger occurs. If there is no risk of colliding or
causing jitter on the regular channels, the injection channel can be used safely without tailgating.

After completing the conversion for the injection channel, the end-of conversion interrupt (INJ_EOC_INTR) is set and the
INJ_START_EN bit is cleared. The conversion data of the injection is put in the SAR_INJ_RESULT register. Similar to the
SAR_CHAN_RESULT, the registers contain mirror bits for "valid" (=INJ_EOC_INTR), range detect, saturation detect inter-
rupt, and a mirror bit of the collision interrupt (INJ_COLLISSION_INTR).

Figure 20-13 is an example when injection channel is enabled during a continuous scan (channel 1, 3, 5, and 7 are enabled),
and tailgating is enabled.

Note that the INJ_START_EN bit is immediately cleared when the SAR is disabled (but only if it was enabled before).

Figure 20-13. Injection Channel Enabled with Tailgating

Ongoing
scan?

Trigger injection
channel

Tailgating?

Ongoing
scan?

Y

Scan injection channel
after the ongoing scan

Scan injection
channel

Generate interrupt
(INJ_COLLISION_INTR)

Y N

N

Y

May collide with next scan of
regular channels

(FW/DSI_COLLISION_INT)

N

Scan injection channel
after the ongoing scan

Regular Scan
Channel 1,3,5,7

Injection
Channel

CONTINUOUS
INJ_START_EN

INJ_TAILGATING=1

EOC_INJ_INTR=1

INJ_START_EN =0

Fill SAR_INJ_RESULT

Regular Scan
Channel 1,3,5,7

Regular Scan
Channel 1,3,5,7

236 PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

SAR ADC

20.3.5 Interrupt

Each of the interrupts described in this section has an inter-
rupt mask in the SAR_INTR_MASK register. By making the
interrupt mask low, the corresponding interrupt source is
ignored. The SAR interrupt is generated if the interrupt mask
bit is high and the corresponding interrupt source is pending.

When servicing an interrupt, the interrupt service routine
(ISR) clears the interrupt source by writing a ‘1’ to the inter-
rupt bit after reading the data.

The SAR_INTR_MASKED register is the logical AND
between the interrupts sources and the interrupt mask. This
provides a convenient way for the firmware to determine the
source of the interrupt.

For verification and debug purposes, a set bit (such as
EOS_SET in the SAR_INTR_SET register) is used to trigger
each interrupt. This allows the firmware to generate an inter-
rupt without the actual event occurring.

20.3.5.1 End-of-Scan Interrupt (EOS_INTR)

After completing a scan, the end-of-scan interrupt
(EOS_INTR) is raised. Firmware should clear this interrupt
after picking up the data from the RESULT registers.

Optionally, the EOS_INTR can also be sent out on the DSI
bus by setting the EOS_DSI_OUT_EN bit in
SAR_SAMPLE_CTRL [31]. The EOS_INTR signal is main-
tained on the DSI bus for two system clock cycles. These
cycles coincide with the data_valid signal for the last chan-
nel of the scan (if selected).

EOS_INTR can be masked by making the EOS_MASK bit 0
in the SAR_INTR_MASK register. EOS_MASKED bit of the
SAR_INTR_MASKED register is the logic AND of the inter-
rupt flags and the interrupt masks. Writing a ‘1’ to EOS_SET
bit in SAR_INTR_SET register can set the EOS_INTR,
which is intended for debug and verification.

20.3.5.2 Overflow Interrupt

If a new scan completes and the hardware tries to set the
EOS_INTR and EOS_INTR is still high (firmware does not
clear it fast enough), then an overflow interrupt
(OVERFLOW_INTR) is generated by the hardware. This
usually means that the firmware is unable to read the previ-
ous results before the current scan completes. In this case,
the old data is overwritten.

OVERFLOW_INTR can be masked by making the
OVERFLOW_MASK bit 0 in SAR_INTR_MASK register.
OVERFLOW_MASKED bit of SAR_INTR_MASKED register
is the logic AND of the interrupt flags and the interrupt
masks, which is for firmware convenience. Writing a ‘1’ to
the OVERFLOW_SET bit in SAR_INTR_SET register can
set OVERFLOW_INTR, which is intended for debug and
verification.

20.3.5.3 Collision Interrupt

It is possible that a new trigger is generated while the
SARSEQ is still busy with the scan started by the previous
trigger. Therefore, the scan for the new trigger is delayed
until after the ongoing scan is completed. It is important to
notify the firmware that the new sample is invalid. This is

done through the collision interrupt, which is raised any time
a new trigger, other than the continuous trigger, is received.

There are three collision interrupts: for the firmware trigger
(FW_COLLISION_INTR), for the DSI trigger
(DSI_COLLISION_INTR), and for the injection channel
(INJ_COLLISION_INTR). This allows the firmware to iden-
tify which trigger collided with an ongoing scan.

When the DSI trigger is used in level mode, the
DSI_COLLISION_INTR will never be set.

The three collision interrupts can be masked by making the
corresponding bit ‘0’ in the SAR_INTR_MASK register. The
corresponding bit in the SAR_INTR_MASKED register is the
logic AND of the interrupt flags and the interrupt masks.
Writing a ‘1’ to the corresponding bit in SAR_INTR_SET reg-
ister can set the collision interrupt, which is intended for
debug and verification.

20.3.5.4 Injection End-of-Conversion Interrupt
(INJ_EOC_INTR)

After completing a conversion for the injection channel, the
injection end-of-conversion interrupt is raised
(INJ_EOC_INTR). The firmware clears this interrupt after
picking up the data from the INJ_RESULT register.

Note that if the injection channel is tailgating a scan, the
EOS_INTR is raised in parallel to starting the injection chan-
nel conversion. The injection channel is not considered part
of the scan.

INJ_EOC_INTR can be masked by making the
INJ_EOC_MASK bit ‘0’ in the SAR_INTR_MASK register.
The INJ_EOC_MASKED bit of SAR_INTR_MASKED regis-
ter is the logic AND of the interrupt flags and the interrupt
masks. Writing a ‘1’ to the INJ_EOC_SET bit in
SAR_INTR_SET register can set INJ_EOC_INTR, which is
intended for debug and verification.

20.3.5.5 Range Detection Interrupts

Range detection interrupt flag can be set after averaging,
alignment, and sign extension (if applicable). This means it
is not required to wait for the entire scan to complete to
determine whether a channel conversion is over-range. The
threshold values need to have the same data format as the
result data.

Range detection interrupt for a specified channel can be
masked by setting the SAR_RANGE_INTR_MASK register
specified bit to ‘0’. Register SAR_RANGE_INTR_MASKED
reflects a bitwise AND between the interrupt request and
mask registers. If the value is not zero, then the SAR inter-
rupt signal to the NVIC is high.

SAR_RANGE_INTR_SET can be used for debug/verifica-
tion. Write a '1' to set the corresponding bit in the interrupt
request register; when read, this register reflects the inter-
rupt request register.

There is a range detect interrupt for each channel
(RANGE_INTR and INJ_RANGE_INTR).

20.3.5.6 Saturate Detection Interrupts

The saturation detection is always applied to every conver-
sion. This feature detects if a sample value is equal to the

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B 237

SAR ADC

minimum or the maximum value for the specific resolution. If
it is, a maskable interrupt flag is set for the corresponding
channel. This allows the firmware to take action, such as
discarding the result, when the SAR ADC saturates. The
sample value is tested right after conversion, before averag-
ing. This means that the interrupt is set while the averaged
result in the data register is not equal to the minimum or
maximum.

When a 10-bit or 8-bit resolution is selected for the channel,
saturate detection is done on 10-bit or 8-bit data.

Saturation interrupt flag is set immediately to enable a fast
response to saturation, before the full scan and averaging.
Saturation detection interrupt for specified channel can be
masked by setting the SAR_SATURATE_INTR_MASK reg-
ister specified bit to ‘0’. SAR_SATURATE_INTR_MASKED
register reflects a bit-wise AND between the interrupt
request and mask registers. If the value is not zero, then the
SAR interrupt signal to the NVIC is high.

SAR_SARTURATE_INTR_SET can be used for debug/veri-
fication. Write a '1' to set the corresponding bit in the inter-
rupt request register; when read, this register reflects the
interrupt request register.

20.3.5.7 Interrupt Cause Overview

INTR_CAUSE register contains an overview of all the pend-
ing SAR interrupts. It allows the ISR to determine the cause
of the interrupt. The register consists of a mirror copy of
SAR_INTR_MASKED. In addition, it has two bits that aggre-
gate the range and saturate detection interrupts of all chan-
nels. It includes a logical OR of all the bits in
RANGE_INTR_MASKED and SATURATE_INTR_MASKED
registers (does not include INJ_RANGE_INTR and
INJ_SATURATE_INTR).

20.3.6 Trigger

The three possible ways to trigger a scan are:

■ A firmware or one-shot trigger is generated when the
firmware writes to the FW_TRIGGER bit of the
SAR_START_CTRL register. After the scan is com-
pleted, the SARSEQ clears the FW_TRIGGER bit and
goes back to idle mode waiting for the next trigger. The
FW_TRIGGER bit is cleared immediately after the SAR
is disabled.

■ A periodic trigger comes in over the DSI connections
(dsi_trigger). This trigger is connected to the output of a
TCPWM; however, it can also be connected to any GPIO
pin or a UDB. The UDB can implement a state machine
looking for a certain sequence of events.

■ A continuous trigger is activated by setting the CONTIN-
UOUS bit in SAR_SAMPLE_CTRL register. In this

mode, after completing a scan the SARSEQ starts the
next scan immediately; therefore, the SARSEQ is
always BUSY. As a result, all other triggers are essen-
tially ignored. Note that FW_TRIGGER will still get
cleared by hardware on the next completion.

The three triggers are mutually exclusive, although there is
no hardware requirement. If a DSI trigger coincides with a
firmware trigger, the DSI trigger is handled first and a sepa-
rate scan is done for the firmware trigger (and a collision
interrupt is set). When a DSI trigger coincides with a contin-
uous trigger, both triggers are effectively handled at the
same time (a collision interrupt may be set for the DSI trig-
ger).

For firmware continuous trigger, it takes only one SAR ADC
clock cycle before the sequencer tells the SAR ADC to start
sampling (provided the sequencer is idle). For the DSI trig-
ger, it depends on the trigger configuration setting.

20.3.6.1 DSI Trigger Configuration

■ DSI Synchronization

The DSI interface of SARSEQ runs at the system clock fre-
quency (clk_sys); see Clocking System chapter on page 61
for details. If the incoming DSI trigger signal is not synchro-
nous to the AHB clock, the signal needs to be synchronized
by double flopping it (default). However, if the DSI trigger
signal is already synchronized with the AHB clock, then
these two flops can be bypassed. The configuration bit,
DSI_SYNC_TRIGGER in the SAR_SAMPLE_CTRL regis-
ter, controls the double flop bypass. DSI_SYNC_TRIGGER
affects the trigger width (TW) and trigger interval (TI)
requirement of the DSI pulse trigger signal.

■ DSI Trigger Level

The DSI trigger can either be a pulse or a level; this is indi-
cated by the configuration bit, DSI_TRIGGER_LEVEL in the
SAR_SAMPLE_CTRL register. If it is a level, then the SAR
starts new scans for as long as the DSI trigger signal
remains high. When the DSI trigger signal is a pulse input, a
positive edge detected on the DSI trigger signal triggers a
new scan.

■ Transmission Time

After the 'dsi_trigger' is raised, it takes some transmission
time before the SAR ADC is told to start sampling. With dif-
ferent DSI_SYNC_TRIGGER and DSI_TRIGGER_LEVEL
configuration, the transmission time is different; Table 20-5
shows the maximum time. Two trigger pulse intervals should
be longer than the transmission time, otherwise, the second
trigger is ignored.

When the SAR is disabled (ENABLED=0), the DSI trigger is
ignored.

Table 20-5. DSI Trigger Maximum Time

Maximum DSI_TRIGGER Transmission Time
Bypass Sync

DSI_SYNC_TRIGGER=0
Enable Sync

DSI_SYNC_TRIGGER=1 (by default)

Pulse trigger: DSI_TRIGGER_LEVEL=0 (by default) 1 clk_sys+2 clk_sar 3 clk_sys+2 clk_sar

Level Trigger: DSI_TRIGGER_LEVEL=1 2 clk_sar 2 clk_sys+2 clk_sar

238 PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

SAR ADC

20.3.7 SAR ADC Status

The current SAR status can be observed through the BUSY
and CUR_CHAN fields in the SAR_STATUS register. The
BUSY bit is high whenever the SAR is busy sampling or
converting a channel; the CUR_CHAN [4:0] bits indicate the
number of the current channel being sampled (channel 16
indicates the injection channel). SW_VREF_NEG bit indi-
cates the current switch status, including DSI and register
controls, of the switch in the SAR ADC that shorts NEG with
VREF input.

CHAN_WORK_VALID in the CHAN_WORK_VALID register
will be set if the WORK data that was sampled during the
last scan is valid. When CHAN_RESULT_VALID is set in
the CHAN_RESULT_VALID register, indicating that the
RESULT data is valid, then the corresponding
CHAN_WORK_VALID bit is cleared. The CUR_AVG_ACCU
and CUR_AVG_CNT fields in the SAR_AVG_STAT register

indicate the current averaging accumulator contents and the
current sample counter value for averaging (counts down).

SAR_MUX_SWITCH_STATUS register gives the current
switch status of MUX_SWITCH0 register.

These status registers help to debug SAR behavior.

20.3.8 Low-Power Mode

The current consumption of the SAR ADC can be divided
into two parts: SAR ADC core and SARREF. There are sev-
eral methods to reduce the power consumption of the SAR
operation. The easiest way is to reduce the trigger fre-
quency; that is, reduce the number of conversions per sec-
ond.

The SAR ADC offers the ICONT_LV[1:0] configuration bits,
which control overall power of the SAR ADC. Maximum
clock rates for each power setting should be observed.

Finally, to reduce power, use a lower resolution on channels
that do not need high accuracy. This shortens the conver-
sion by up to four out of 18 cycles (for 8-bit resolution and
minimum sample time).

20.3.9 System Operation

After the SAR analog is enabled by setting the ENABLED bit
(SAR_CTRL [31]), follow these steps to start ADC conver-
sions with the SARSEQ:

1. Set SAR ADC control mode: 20.3.10 Register Mode or
20.3.11 DSI Mode

2. Set SARMUX analog routing (pin/signal selection) via
sequencer/firmware/DSI

3. Set the global SARSEQ conversion configurations

4. Configure each channel source (such as pin address)

5. Enable the channels

6. Set the trigger type

7. Set interrupt masks

8. Start the trigger source

9. Retrieve data after each end of conversion interrupt

10. Perform injection conversions if needed

Register mode means using registers to control the SAR-
MUX and SAR ADC conversion; DSI mode means using
DSI from UDB to control. The major difference between
these two control modes is shown in Table 20-8. DSI mode
can be enabled by setting DSI_MODE bit (SAR_CTRL [29]).

Table 20-6. Trigger Signal Requirement

Trigger Specification Requirement

Trigger Width (TW)
TW should be greater enough so that a trigger can be locked. If DSI_SYNC_TRIGGER=1, TW >= 2 clk_sys
cycle. If DSI_SYNC_TRIGGER=0, TW >= 1 SAR clock cycle.

Trigger interval (TI)
Trigger interval of the DSI pulse trigger signal should be longer than the transmission time (as specified in
Table 20-5); otherwise, the second trigger pulse will be ignored.

Table 20-7. ICONT_LV for Low Power Consumption

ICONT_LV[1:0]
Relative Power of

SAR ADC Core (%)
Maximum Frequency

[MHz]
Minimum Sample Time

[cycles]
Maximum Sample Speed (at 12-

bit) [ksps]

0 100 18 4 1000

1 50 4.5 3 250

2 133 18 4 1000

3 25 4.5 2.25 125

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B 239

SAR ADC

20.3.10 Register Mode

Use registers to configure the SAR ADC; this is the most
common usage. Detailed register bit definition is available in
the PSoC 4100M/4200M Family: PSoC 4 Registers TRM.

20.3.10.1 SARMUX Analog Routing

In register mode, there are two ways to control the SARMUX
analog routing: sequencer and firmware.

Sequencer Control

It is essential that the appropriate hardware control bits in
MUX_SWITCH_HW_CTRL register and the firmware con-
trol bits in MUX_SWITCH0 register are both set to ‘1’.
Ensure that SWITCH_DISABLE=0; setting
SWITCH_DISABLE disables sequencer control.

With sequencer control, the pin or internal signal a channel
converts is specified by the combination of port and pin
address. The PORT_ADDR bits are SAR_CHANx_CONFIG
[6:4] and PIN_ADDR bits are SAR_CHANx_CONFIG [2:0].
Table 20-9 shows the PORT_ADDR and PIN_ADDR setup
with corresponding SARMUX selection. The unused port/

pins are reserved for other products in the PSoC 4 series.

For differential conversion, the negative terminal connection
is dependent on the positive terminal connection, which is
defined by PORT_ADDR and PIN_ADDR. By setting
DIFFERENTIAL_EN, the channel will do a differential con-
version on the even/odd pin pair specified by the pin

Table 20-8. Difference between Control Modes

Control Mode Register DSI

DSI_MODE 0 1

SARMUX control

Sequencer control registers:

SAR_CHANx_CONFIG, SAR_MUX_SWITCH0,
SAR_MUX_HW_SWITCH_CTRL SAR_CTRL

Firmware control registers:

SAR_MUX_SWITCH0, SAR_MUX_HW_SWITCH_CTRL,
SAR_CTRL

DSI signal control signals: dsi_out,
dsi_oe,dsi_swctrl, dsi_sw_negvref

Firmware control registers: SAR_MUX_SWITCH0,
SAR_MUX_HW_SWITCH_CTRL, SAR_CTRL

Global configuration

Global configure registers:

SAR_CTRL, SAR_SAMPLE_CTRL, SAR_SAMPLE01,
SAR_SAMPLE23, SAR_RANGE_THES,
SAR_RANGE_COND

Global configure registers:

SAR_CTRL, SAR_SAMPLE_CTRL,
SAR_SAMPLE01, SAR_SAMPLE23,
SAR_RANGE_THES, SAR_RANGE_COND

Channel configuration
Channel configure registers:

CHAN_CONFIG, CHAN_EN, INJ_CHAN_CONFIG

By DSI signal:

dsi_cfg_st_sel, dsi_cfg_average,
dsi_cfg_resolution, dsi_cfg_differential
(CHAN_CONFIG, CHAN_EN, INJ_CHAN_CONFIG
are ignored)

Trigger

All Apply

Firmware trigger (SAR_START_CTRL[0])

DSI trigger (dsi_trigger)

Continuous trigger (SAR_SAMPLE_CTRL [0])

All Apply

Firmware trigger (SAR_START_CTRL[0])

DSI trigger (dsi_trigger)

Continuous trigger (SAR_SAMPLE_CTRL [0])

Interrupt All Apply
All Apply (only EOS_INTR, RANGE_INTR, SATU-
RATE_INTR output on DSI signal)

DSI output Support Support

Result data 8 channel result registers 1 injection channel result register Only channel0 result register is available

Injection Support Not supported

Average Support average on one PIN/signal Support average on different PIN/signal

Table 20-9. PORT_ADDR and PIN_ADDR

PORT_ADDR PIN_ADDR Description

0 0..7 8 dedicated pins of the SARMUX

1 X sarbus0a

a. sarbus0 and sarbus1 connect to the output of the CTBm block, which
contains opamp0/1. See the Continuous Time Block mini
(CTBm) chapter on page 251 for more information. When
PORT_ADDR=1, sarbus0 connects to positive terminal of SAR ADC re-
gardless of the value of PIN_ADDR; sarbus1 can only connect to the
negative terminal of SAR ADC when differential mode is enabled and
PORT_ADDR=1.

1 X sarbus1a

7 0 Temperature sensor

7 2 AMUXBUS-A

7 3 AMUXBUS-B

http://www.cypress.com/?rid=111232

240 PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

SAR ADC

address with PIN_ADDR [0] ignored. P2.0/P2.1, P2.2/P2.3,
P2.4/P2.5, P2.6/P2.7 are valid differential pairs for
sequencer control. More flexible analog can be implemented
by firmware or DSI.

For single-ended conversions, NEG_SEL (SAR_CTRL
[11:9]) is intended to decide which signal is connected to
negative input. In differential mode, these bits are ignored.
Negative input choice affects the input voltage range and
effective resolution. See Negative Input Selection on
page 223 for details. The options include: VSSA, VREF, or an
external input from any of the eight pins with SARMUX con-
nectivity. To connect negative input to VREF, an additional
bit, SAR_HW_CTRL_NEGVREF (SAR_CTRL[13]) must be
set, because the MUX_SWITCH_HW_CTRL register does
not have that hardware control bit.

Firmware Control

By default, the SARMUX operates in firmware control.
VPLUS (positive) and VMINUS (negative) inputs of SAR
ADC can be controlled separately by setting the appropriate
bits in SAR_MUX_SWITCH0 [29:0]. Clear appropriate bits in
the hardware switch control register
(SAR_MUX_SWITCH_HW_CTR[n]=0). Otherwise, hard-
ware control method (sequencer/DSI) will control the SAR-
MUX analog routing.

SAR_CTRL register bit SWITCH_DISABLE is used to dis-
able SAR sequencer from enabling routing switches. Note
that firmware control mode can always close switches inde-
pendent of this bit value; however, it is recommended to set
it to ‘1’.

NEG_SEL (SAR_CTRL [11:9]) decides which signal is con-
nected to the negative terminal (vminus) of SAR ADC in sin-
gle-ended mode. In differential mode, these bits are ignored.
In single-ended mode, when using sequencer control, you
must set these bits. When using firmware control, NEG_SEL
is ignored and SAR_MUX_SWITCH0 should be set to con-
trol the negative input. A special case is when
SAR_MUX_SWITCH0 does not connect internal VREF to
vminus; then, set NEG_SEL to ‘7’. Negative input choice
affects the input voltage range, SNR, and effective resolu-
tion. See Negative Input Selection on page 223 for details.

20.3.10.2 Global SARSEQ Configuration

A number of conversion options that apply to all channels
are configured globally. In several cases, the channel con-
figuration has bits to choose what parts of the global config-
uration to use. Global configuration is applied to both
register control and DSI control mode.

SAR_CTRL, SAR_SAMPLE_CTRL, SAR_SAMPLE01,
SAR_SAMPLE23, SAR_RANGE_THES, and
SAR_RANGE_COND are all global configuration registers.

Typically, these configurations should not be modified while
a scan is in progress. If configuration settings that are in use
are changed, the results are undefined. Configuration set-
tings that are not currently in use can be changed without
affecting the ongoing scan.

Table 20-10. Global Configuration Registers

Configurations Control Registers Detailed Reference

Reference selection SAR_CTRL[6:4] 20.3.3.1 Reference Options

Signed/unsigned selection SAR_SAMPLE_CTRL [3:2] 20.3.1.3 Result Data Format

Data left/right alignment SAR_SAMPLE_CTRL [1] 20.3.1.3 Result Data Format

Negative input selection in single-ended mode SAR_CTRL[11:9] 20.3.1.4 Negative Input Selection

Resolution SAR_SAMPLE_CTRL[0]a 20.3.1.5 Resolution

Acquisition time
SAR_SAMPLE_TIME01 [25:0]
SAR_SAMPLE_TIME32 [25:0]

20.3.1.6 Acquisition Time

Averaging count SAR_SAMPLE_CTRL[7:4] 20.3.4.1 Averaging

Range detection
SAR_RANGE_THRES [31:0]
SAR_RANGE_COND [31:30]

20.3.4.2 Range Detection

a. The alternate resolution should be enabled by the SAR_RESOLUTION bit in the SAR_CHAN_CONFIG register. If the alternate resolution is not enabled,
the ADC operates at 12-bits of resolution, irrespective of the resolution set by the SAR_SAMPLE_CTRL register.

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B 241

SAR ADC

20.3.10.3 Channel Configurations

Channel configuration includes:

■ Differential or single-ended mode selection

■ Global configuration selection: sample time, resolution, averaging enable

■ DSI output enable

As a general rule, the channel configurations should only be updated between scans (same as global configurations). How-
ever, if a channel is not enabled for the ongoing scan, then the configuration for that channel can be changed freely without
affecting the ongoing scan. If this rule is violated, the results are undefined. The channels that enable themselves are the only
exception to this rule; enabled channels can be changed during the on-going scan, and it will be effective in the next scan.
Changing the enabled channels may change the sample rate.

SUB_RESOLUTION (SAR_SAMPLE_CTRL[0]) can choose which alternate resolution will be used, either 8-bit or 10 bit. Res-
olution (SAR_CHANx_CONFIG [9]) can determine whether default resolution 12-bit or alternate resolution is used. When
averaging is enabled, the SUB_RESOLUTION is ignored; the resolution will be fixed to the maximum 12-bit.

20.3.10.4 Channel Enables

A CHAN_EN register is available to individually enable each
channel. All enabled channels are scanned when the next
trigger happens. After a trigger, the channel enables can
immediately be updated to prepare for the next scan. This
does not affect the ongoing scan. Note that this is an excep-
tion to the rule; all other configurations (global or channel)
should not be changed while a scan is in progress.

20.3.10.5 Interrupt Masks

There are six interrupt sources; all have an interrupt mask:

■ End-of-scan interrupt

■ Overflow interrupt

■ Collision interrupt

■ Injection end-of-conversion interrupt

■ Range detection interrupt

■ Saturate detection interrupt

Each interrupt has an interrupt request register (INTR,
SATURATE_INTR, RANGE_INTR), a software interrupt set

register (INTR_SET, SATURATE_INTR_SET,
RANGE_INTR_SET), an interrupt mask register
(INTR_MASK, SATURATE_INTR_MASK,
RANGE_INTR_MASK), and an interrupt re-quest masked
result register (INTR_MASKED,
SATURATE_INTR_MASKED, RANGE_INTR_MASKED).
An interrupt cause register is also added to have an over-
view of all the currently pending SAR interrupts and allows
the ISR to determine the interrupt cause by just reading this
register.

See 20.3.5 Interrupt for details.

20.3.10.6 Trigger

The three ways to start an A/D conversion are:

■ Firmware trigger: SAR_START_CTRL [0]

■ DSI trigger: dsi_trigger

■ Continuous trigger: SAR_SAMPLE_CTRL [16]

See 20.3.6 Trigger for details.

Table 20-11. Channel Configuration Registers

Configurations Registers Detailed Reference

Single-ended/differential SAR_CHANx_CONFIG [8] 20.3.1.1 Single-ended and Differential Mode

Acquisition time selection SAR_CHANx_CONFIG [13:12] 20.3.1.6 Acquisition Time

Resolution selection SAR_CHANx_CONFIG [9] 20.3.1.5 Resolution

Average enable SAR_CHANx_CONFIG [10] 20.3.4.1 Averaging

DSI output enable SAR_CHANx_CONFIG [30] 20.3.11.8 DSI Output Enable

Table 20-12. Resolution

Average
SUB_RESOLUTION

SAR_SAMPLE_CTRL[0]
Register Mode Resolution
SAR_CHANx_CONFIG [9]

Channel Resolution

OFF 0 1 8-bit

OFF 1 1 10-bit

OFF 0 0 12-bit

OFF 1 0 12-bit

ON X X 12-bit

242 PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

SAR ADC

20.3.10.7 Retrieve Data after Each Interrupt

Make sure you read the data from the result register after
each scan; otherwise, the data may change because of the
next scan's configuration.

The 16-bit data registers are used to implement double buff-
ering for up to eight channels (injection channel do not have
double buffer). Double buffering means that there is one
working register and one result register for each channel.
Data is written to the working register immediately after
sampling this channel. It is then copied to the result register
from the working register after all enabled channels in this
scan have been sampled.

The CHAN_WORK_VALID bit is set after the corresponding
WORK data is valid, that is, it was already sampled during
the current scan. Corresponding CHAN_RESULT_VALID is
set after completed scan. When CHAN_RESULT_VALID is
set, the corresponding CHAN_WORK_VALID bit is cleared.

For firmware convenience, bit [31] in SAR_CHAN_WORK
register is the mirror bit of the corresponding bit in
SAR_CHAN_WORK_VALID register. Bit[29], bit [30],and
bit[31] in SAR_CHAN_RESULT are the mirror bits of the
corresponding bit in SAR_SATURATE_INTR,
SAR_RANGE_INTR, and SAR_CHAN_RESULT_VALID
registers. Note that the interrupt bits mirrored here are the
raw (unmasked) interrupt bits. It helps firmware to check if
the data is valid by just reading the data register.

If DSI output is enabled, it allows the SARSEQ result data to
be processed by the UDBs and the channel number allows
the possibility of applying different processing to data of dif-
ferent channels. See 20.3.11.8 DSI Output Enable for
detailed description.

20.3.10.8 Injection Conversions

Injection channel can be triggered by setting the start bit
INJ_START_EN (INJ_CHAN_CONFIG [31]). To prevent the
collision of regular automatic scan, it is recommended to
enable tailgating by setting INJ_CHAN_CONFIG [30]. When

it is enabled, INJ_START_EN will enable the injection chan-
nel to be scanned at the end of next scan of regular chan-
nels.

See 20.3.4.4 Injection Channel for details.

20.3.11 DSI Mode

In DSI control mode, all of SAR ADC configuration can be
done by DSI signals from UDB except the global configura-
tion, such as interrupt masks, range detect settings, and trig-
gers. The major difference between DSI mode and register
mode is that the DSI mode allows hardware to dynamically
control the ADC configuration. Figure 20-14 is a subset of
the SAR ADC block diagram (Figure 20-1), which specifies
the DSI input and output signals.

Figure 20-14. DSI Control Mode Block Diagram

The DSI control mode is selected by setting the DSI_MODE
bit in the SAR_CTRL register. In this mode, the SARSEQ
ignores all channel configurations in CHAN_EN,
CHAN_CONFIG, and INJ_CHAN_CONFIG. Instead, it uses
the configuration coming in via the DSI signal.

The following DSI signals are used.

SARADC
Sequencer Logic and

State Machine

d
si

_t
ri

g
g

er
, d

s
i_

d
at

a_
h

ilo
_s

el

 d
si

_
cf

g
 *

*

D
si

_o
u

t[
],

 d
si

_o
e

[]
,

d
si

_s
w

ct
rl

[]
,

 d
si

_s
w

_n
eg

ve
f,

sa
r_

d
si

_s
am

p
le

_d
o

n
e

sa
r_

d
si

_c
h

an
_i

d
[]

sa
r_

d
si

_d
at

a[
]

sa
r_

d
si

_e
o

s_
in

tr

UDB

Table 20-13. DSI Signals

Signal Width Description

sar_dsi_sample_done 1
Pulse to indicate that SAR ADC sampling is done. Switches can be changed to the next signal that
need to be converted (identical to SAR ADC next output)

sar_dsi_chan_id_valid 1 Valid signal for channel ID

sar_dsi_chan_id 4

Regular mode: Channel ID, ID of the channel that is currently being converted (early)

DSI control mode:

[0]=saturation detect interrupt

[1]=range detect interrupt (valid together with data output)

sar_dsi_data_valid 1 Valid signal for data value

sar_dsi_data 12

Result of converting (and averaging, if available) for one channel; the internal averaging result is 16-
bit wide.

If dsi_data_hilo_sel=0 then sar_dsi_data[11:0]= sar_data[11:0].

If dsi_data_hilo_sel=1 then sar_dsi_data[7:0]= sar_data[15:8] and sar_dsi_data[11:8]=<undefined>.

sar_dsi_eos_intr 1 End-Of-Scan interrupt to indicate that SARSEQ just finished a scan of all enabled channels

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B 243

SAR ADC

20.3.11.1 Firmware Analog Routing

In DSI mode, analog routing can be implemented by DSI
signals and firmware. Firmware control is always available
regardless of the register configuration and it is the same as
in register mode. See 20.3.2.1 Analog Routing for firmware
control details.

20.3.11.2 DSI Analog Routing

DSI signals from UDB block are used to control SARMUX
switches. In DSI control mode, the SARSEQ does not out-
put any switch enables from the sequencer. Figure 20-4
shows that DSI can control every switch, except the DFT
(design for test) switch. Thus, negative and positive input of
SAR ADC can be connected to any switches in DSI mode.

Besides the DSI signals, appropriate hardware and firmware
control bits in registers should be set. These registers and
signals include SAR_MUX_SWITCH0 [n] = 1 and
SAR_MUX_SWITCH_HW_CTRL[n] = 1. When VREF is con-
nected to the negative input, set SAR_CTRL [11:9] = 7 (firm-
ware control field) and SAR_CTRL [13] = 1 (hardware
control bit) except DSI signals.

DSI signals have control over the negative terminal of SAR
ADC through dsi_swctrl[0] and dsi_sw_neg vREF for single-
ended mode. If NEG_SEL (SAR_CTRL[11:9]) is set, only
NEG_SEL=7 is useful; the other value is ignored.

dsi_out 8

dsi_out[0]=1, P2.0 connected to ADC

dsi_out[1]=1, P2.1 connected to ADC

…

dsi_out[7]=1, P2.7 connected to ADC

Note MUX_SWITCH0 configuration determines whether the pin is connected to vplus or vminus.

dsi_oe 4

dsi_oe[0]=1, AMUXBUSA connected to ADC

dsi_oe[1]=1, AMUXBUSB connected to ADC

dsi_oe[2]=1, opamp0 output connected to ADC

dsi_oe[3]=1, opamp1 output connected to ADC

Note MUX_SWITCH0 configuration determines whether the signal is connected to vplus or vminus.

dsi_swctrl[0] 1 SARMUX analog switch control, connect vssa_kelvin to vminus

dsi_swctrl[1] 1 SARMUX analog switch control, connect temp_sens to vplus

dsi_sw_negvref 1 SAR ADC internal switch control, connect VREF input to NEG input

dsi_cfg_st_sel 2 Configuration control for DSI control mode: select 1 of 4 global sample times

dsi_cfg_average 1 Configuration control for DSI control mode: enable averaging

dsi_cfg_resolution 1
Configuration control for DSI control mode: 0=12-bit resolution

1=use globally configured alternate resolution (8 or 10 bit)

dsi_cfg_differential 1 Configuration control for DSI control mode: 0= single-ended, 1=differential

dsi_trigger 1 Trigger to start SARSEQ scanning all enabled channels

dsi_data_hilo_sel 1
Selects between high and low byte output for sar_dsi_data[7:0]. This signal is fully asynchronous
(affects sar_dsi_data without any clock involved).

Table 20-13. DSI Signals

Signal Width Description

244 PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

SAR ADC

Table 20-14 shows the DSI signals.

20.3.11.3 Global SARSEQ Configuration

Global configuration applies to both register mode and DSI control mode. See 20.3.10.2 Global SARSEQ Configuration for
details.

20.3.11.4 DSI Channel Configuration

For DSI control mode, only channel 0 is available. The channel 0 configuration can be done with DSI signals, as shown in
Table 20-15. CHAN_EN and channel configurations in CHAN_CONFIG and INJ_CHAN_CONFIG are ignored.

The dsi_cfg_* signals can optionally be synchronized to the SAR clock domain (actually clk_hf) by setting
DSI_SYNC_CONFIG. Bypassing synchronization may be required when running the SAR at a low frequency.

20.3.11.5 Interrupt

For an introduction to the SAR ADC interrupt, see Interrupt
Masks on page 241. All interrupt masks work normally in
register control mode. Not all interrupts are sent on DSI;
SATURATE_INTR, RANGE_INTR, and EOS_INTR are sent
via the DSI signal.

■ Along with the data, SATURATE_INTR is output on
dsi_chan_id[0]; SATURATE_INTR[0] is set in DSI control
mode because only channel 0 is valid in DSI mode.

■ Along with the data, RANGE_INTR is output on
dsi_chan_id[1]; RANGE _INTR[0] is set in DSI control
mode because only channel 0 is valid in DSI mode.

■ Channel enables are ignored; this means only one con-
version is done per trigger. An EOS_INTR is generated
for each conversion.

■ EOS_INTR is always sent via the DSI signal
sar_dsi_eos_intr (a copy of dsi_data_valid).

Table 20-14. DSI Analog Routing

Signal Width Description

dsi_out 8

dsi_out[0]=1, P2.0 connected to ADC

dsi_out[1]=1, P2.1 connected to ADC

…

dsi_out[7]=1, P2.7 connected to ADC

Note Whether the pin is connected to vplus or vminus is determined by MUX_SWITCH0 configuration.

dsi_oe 4

dsi_oe[0]=1, AMUXBUSA connected to ADC

dsi_oe[1]=1, AMUXBUSB connected to ADC

dsi_oe[2]=1, sarbus0 output connected to ADC

dsi_oe[3]=1, sarbus1 output connected to ADC

Note Whether the signal is connected to vplus or vminus is determined by MUX_SWITCH0 configuration.

dsi_swctrl[0] 1 SARMUX analog switch control, connect VSSA to vminus

dsi_swctrl[1] 1 SARMUX analog switch control, connect temperature sensor to vplus

dsi_sw_negvref 1 SAR ADC internal switch control, connect VREF input to NEG input

Table 20-15. DSI Channel Configuration

Signal Width Configuration Description

dsi_cfg_st_sel 2 Acquisition time Configuration control for DSI control mode: select 1 of 4 global sample times

dsi_cfg_average 1 Average enable Configuration control for DSI control mode: enable averaging

dsi_cfg_resolution 1 Resolution

Configuration control for DSI control mode:

0: 12-bit resolution

1: use globally configure resolution bit SUB_RESOLUTION (8 or 10 bit)

dsi_cfg_differential 1 Differential/single-ended

Configuration control for DSI control mode:

0: single-ended

1: differential

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B 245

SAR ADC

Table 20-16 lists the interrupts that are sent via DSI signals.

20.3.11.6 Trigger

Typically, DSI control mode is used along with the DSI trig-
ger. However, other trigger sources, such as firmware trig-
ger and continuous trigger are also supported. The trigger
configuration is the same as in the register control mode.
See Trigger on page 237 for details.

For DSI trigger, the configuration settings (dsi_cfg_*) and
switch settings should be stable no later than the cycle in
which the dsi_trigger is sent. They should remain stable until
the positive edge of the sar_dsi_sample_done.

20.3.11.7 Retrieve Data

The result data and channel number are sent out on
sar_dsi_data. It is equivalent to dsi_out_en high in register
control mode. See 20.3.11.8 DSI Output Enable for details.
After each conversion, the data is also written to both
CHAN_WORK0 and CHAN_RESULT0 registers.

20.3.11.8 DSI Output Enable

If the DSI_OUT_EN bit (SAR_CHANx_CONFIG[31]) is set,
the result data and channel number are also sent out on the
DSI bus (sar_dsi_data, sar_dsi_chan_id), next to being
stored in the regular result register. This allows for the
SARSEQ result data to be processed by the UDBs and the
channel number allows for the possibility to apply different
processing to data of different channels.

The data sent out on the DSI bus is formatted in the same
way it is stored in the result register. However, by default
only the 12 LSBs are sent out; it is not recommended to use
left alignment unless more than 12 bits are required. To get
the upper eight LSBs, the dsi_data_hilo_sel input needs to
be set to ‘1’. To get the full 16-bit data from result register,
first set dsi_data_hilo_sel = 0 to get the lower 12-bit data
and then set dsi_data_hilo_sel = 1 to get the upper 8-bit
data. Additional data process is needed to deal with the data
overlap.

The channel number (sar_dsi_chan_id) will be sent out ear-
lier, after the SAR ADC has completed sampling that chan-
nel. The channel number by itself can trigger the UDBs to
drive some GPIO pins, which in turn can power up (or down)
some off-chip device. This drives an analog input pin that
will be scanned by one of the subsequent channels in the
same scan (a long sample time is useful here).

Note that the data is sent out one cycle after the conversion
is completed. Channel numbers, data, and their respective
valid signals are maintained for two system clock cycles on
the DSI bus.

20.3.12 Analog Routing Configuration Example

Table 20-18 shows some examples of pin and signal selection for sequencer control, firmware control, and DSI control.

Table 20-16. DSI Signal Interrupts

Signal Width Description

sar_dsi_chan_id 4

Register mode: Channel ID (ID of
the channel that is currently being
converted)

DSI control mode:
[0]=saturation detect interrupt
[1]=range detect interrupt (valid
together with data output)

sar_dsi_eos_intr 1
End-of-scan interrupt to indicate
that the SARSEQ has finished a
scan of all enabled channels

Table 20-17. DSI Output Signals

Signal Width Description

sar_dsi_sample_done 1
Pulse to indicate that SAR ADC sampling is done. Switches can be changed to the next signal that
need to be converted (identical to SAR ADC next output)

sar_dsi_chan_id_valid 1 Valid signal for channel ID

sar_dsi_chan_id 4

Regular mode: Channel ID, ID of the channel that is currently being converted (early)

DSI control mode:

[0]=saturation detect interrupt

[1]=range detect interrupt (valid together with data output)

sar_dsi_data_valid 1 Valid signal for data value

sar_dsi_data 12

Result of converting (and averaging if there is) for one channel. The internal averaging result is 16-bit
wide.

If dsi_data_hilo_sel=0 then sar_dsi_data[11:0]= sar_data[11:0]

If dsi_data_hilo_sel=1 then sar_dsi_data[7:0]= sar_data[15:8] and sar_dsi_data[11:8]=<undefined>

sar_dsi_eos_intr 1 End-Of-Scan interrupt to indicate that SARSEQ just finished a scan of all enabled channels

dsi_data_hilo_sel 1
Selects between high and low byte output for sar_dsi_data[7:0]. This signal is fully asynchronous
(affects sar_dsi_data without any clock involved)

246 PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

SAR ADC

Table 20-18. Analog Routing Configuration Example

Sequencer Control Firmware Control DSI Control

DIFFERENTIAL_EN = 0

(CHANx_CONFIG[8])

SWITCH_DISABLE = 0 (CTRL[30])

PORT_ADDR = 0
(CHANx_CONFIG[6:4])

PIN_ADDR = 0

(CHANx_CONFIG[2:0])

NEG_SEL = 0 (CTRL [11:9])

MUX_SWITCH0[0] = 1

MUX_SWITCH0[16] = 1

MUX_SWITCH_HW_CTRL[0] = 1

MUX_SWITCH_HW_CTRL[16]= 1

DIFFERENTIAL_EN = 0

(CHANx_CONFIG[8])

SWITCH_DISABLE = 1 (CTRL[30])

MUX_SWITCH0[0] = 1

MUX_SWITCH0[16] = 1

MUX_SWITCH_HW_CTRL[0] = 0

MUX_SWITCH_HW_CTRL[16] = 0

DSI_MODE = 1 (CTRL[29])

dsi_cfg_differential = 0

dsi_out [0] =1

dsi_swctrl[0]=1

MUX_SWITCH0[0] = 1

MUX_SWITCH_HW_CTRL[0] = 1

MUX_SWITCH_HW_CTRL[16]=1

MUX_SWITCH0 [16] = 1

DIFFERENTIAL_EN = 0

(CHANx_CONFIG[8])

SWITCH_DISABLE = 0 (CTRL[30])

PORT_ADDR = 0

(CHANx_CONFIG[6:4])

PIN_ADDR = 0

(CHANx_CONFIG[2:0])

NEG_SEL = 7 (CTRL [11:9])

MUX_SWITCH0[0] = 1

MUX_SWITCH_HW_CTRL[0]=1

HW_CTRL_NEGVREF =1

(CTRL[13])

DIFFERENTIAL_EN = 0

(CHANx_CONFIG[8])

SWITCH_DISABLE = 1 (CTRL[30])

MUX_SWITCH0[0] = 1

MUX_SWITCH_HW_CTRL[0] =0

NEG_SEL = 7 (CTRL [11:9])

HW_CTRL_NEGVREF =0

(CTRL[13])

DSI_MODE = 1 (CTRL[29])

dsi_cfg_differential = 0

MUX_SWITCH0[0] = 1

MUX_SWITCH_HW_CTRL[0] = 1

dsi_out [0] =1

dsi_sw_negvref =1

HW_CTRL_NEGVREF =1

(CTRL[13])

DIFFERENTIAL_EN = 1

(CHANx_CONFIG[8])

SWITCH_DISABLE = 0 (CTRL[30])

PORT_ADDR = 0

(CHANx_CONFIG[6:4])

PIN_ADDR = 0 or PIN_ADDR = 1

(CHANx_CONFIG[2:0])

MUX_SWITCH0[0] = 1

MUX_SWITCH0[9] = 1

MUX_SWITCH_HW_CTRL[0] = 1

MUX_SWITCH_HW_CTRL[1] = 1

DIFFERENTIAL_EN = 1

(CHANx_CONFIG[8])

SWITCH_DISABLE = 1

(CTRL[30])

MUX_SWITCH0[0] = 1

MUX_SWITCH0[9] = 1

MUX_SWITCH_HW_CTRL[0] = 0

MUX_SWITCH_HW_CTRL[1] = 0

DSI_MODE = 1 (CTRL[29])

dsi_cfg_differential = 1

dsi_out [0] =1

dsi_out [1] =1

MUX_SWITCH0[0] = 1

MUX_SWITCH_HW_CTRL[0] = 1

MUX_SWITCH0 [9] = 1

MUX_SWITCH_HW_CTRL[1]=1

DIFFERENTIAL_EN = 0

(CHANx_CONFIG[8])

SWITCH_DISABLE = 0 (CTRL[30])

PORT_ADDR = 1

(CHANx_CONFIG[6:4])

NEG_SEL = 0 (CTRL [11:9])

MUX_SWITCH0[22] = 1

MUX_SWITCH0[16] = 1

MUX_SWITCH_HW_CTRL[22] =1

MUX_SWITCH_HW_CTRL[16] =1

Note Connecting sarbus1 to VPLUS is
not supported for Port/Pin control

DIFFERENTIAL_EN = 0

(CHANx_CONFIG[8])

SWITCH_DISABLE = 1 (CTRL[30])

MUX_SWITCH0[22] = 1

MUX_SWITCH0[16] = 1

MUX_SWITCH_HW_CTRL[22] = 0

MUX_SWITCH_HW_CTRL[16] = 0

DSI_MODE = 1 (CTRL[29])

dsi_cfg_differential = 0

dsi_oe [2] =1

dsi_swctrl[0]=1

MUX_SWITCH0 [16] = 1

MUX_SWITCH0[22] = 1

MUX_SWITCH_HW_CTRL[16]=1

MUX_SWITCH_HW_CTRL[22] =1

VPLUS

VMINUS

SARADC

P2.0

VSSA

VPLUS

VMINUS

SARADC

P2.0

Vref

VPLUS

VMINUS

SARADC

P2.0

P2.1

VPLUS

VMINUS

SARADC

sarbus0

VSSA

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B 247

SAR ADC

DIFFERENTIAL_EN = 1

(CHANx_CONFIG[8])

SWITCH_DISABLE = 0 (CTRL[30])

PORT_ADDR = 1

(CHANx_CONFIG[6:4])

MUX_SWITCH0[22] = 1

MUX_SWITCH0[25] = 1

MUX_SWITCH_HW_CTRL[22]=1

MUX_SWITCH_HW_CTRL[23]=1

DIFFERENTIAL_EN = 1

(CHANx_CONFIG[8])

SWITCH_DISABLE = 1 (CTRL[30])

MUX_SWITCH0[22] = 1

MUX_SWITCH0[25] = 1

MUX_SWITCH_HW_CTRL[22] = 0

MUX_SWITCH_HW_CTRL[23] = 0

DSI_MODE = 1 (CTRL[29])

dsi_cfg_differential = 1

dsi_oe [2] = 1

dsi_oe [3] = 1

MUX_SWITCH0[22] = 1

MUX_SWITCH0[25] = 1

MUX_SWITCH_HW_CTRL[22]=1

MUX_SWITCH_HW_CTRL[23]=1

DIFFERENTIAL_EN = 0

(CHANx_CONFIG[8])

SWITCH_DISABLE = 0 (CTRL[30])

PORT_ADDR = 7

(CHANx_CONFIG[6:4])

PIN_ADDR = 2

(CHANx_CONFIG[2:0])

NEG_SEL = 0 (CTRL [11:9])

MUX_SWITCH0[18] = 1

MUX_SWITCH0[16] = 1

MUX_SWITCH_HW_CTRL[18]= 1

MUX_SWITCH_HW_CTRL[16]= 1

DIFFERENTIAL_EN = 0

(CHANx_CONFIG[8])

SWITCH_DISABLE = 1 (CTRL[30])

MUX_SWITCH0[18] = 1

MUX_SWITCH0[16] = 1

MUX_SWITCH_HW_CTRL[18]= 0

MUX_SWITCH_HW_CTRL[16]= 0

DSI_MODE = 1 (CTRL[29])

dsi_cfg_differential = 0

dsi_oe [0] = 1

dsi_swctrl[0]=1

MUX_SWITCH0[18] = 1

MUX_SWITCH_HW_CTRL[18]= 1

MUX_SWITCH_HW_CTRL[16]=1

MUX_SWITCH0 [16] = 1

DIFFERENTIAL_EN = 1

(CHANx_CONFIG[8])

SWITCH_DISABLE = 0 (CTRL[30])

PORT_ADDR = 7

(CHANx_CONFIG[6:4])

PIN_ADDR = 2

(CHANx_CONFIG[2:0])

MUX_SWITCH0[18] = 1

MUX_SWITCH0[21] = 1

MUX_SWITCH_HW_CTRL[18]= 1

MUX_SWITCH_HW_CTRL[19]= 1

DIFFERENTIAL_EN = 1

(CHANx_CONFIG[8])

SWITCH_DISABLE = 1 (CTRL[30])

MUX_SWITCH0[18] = 1

MUX_SWITCH0[21] = 1

MUX_SWITCH_HW_CTRL[18]= 0

MUX_SWITCH_HW_CTRL[19]= 0

DSI_MODE = 1 (CTRL[29])

dsi_cfg_differential = 1

dsi_oe [0] = 1

dsi_oe [1] = 1

MUX_SWITCH0[18] = 1

MUX_SWITCH0[21] = 1

MUX_SWITCH_HW_CTRL[18]= 1

MUX_SWITCH_HW_CTRL[19]= 1

Not supported.

The differential pair is fixed for Port/Pin
control

DIFFERENTIAL_EN = 1

(CHANx_CONFIG[8])

SWITCH_DISABLE = 1 (CTRL[30])

MUX_SWITCH0[19] = 1

MUX_SWITCH0[20] = 1

MUX_SWITCH_HW_CTRL[18] =0

MUX_SWITCH_HW_CTRL[19] = 0

DSI_MODE = 1 (CTRL[29])

dsi_cfg_differential = 1

dsi_oe [0] = 1

dsi_oe [1] = 1

MUX_SWITCH0[19] = 1

MUX_SWITCH0[20] = 1

MUX_SWITCH_HW_CTRL[18] =1

MUX_SWITCH_HW_CTRL[19] = 1

Table 20-18. Analog Routing Configuration Example<Italic> (continued)

Sequencer Control Firmware Control DSI Control
VPLUS

VMINUS

SARADC

sarbus0

sarbus1

VPLUS

VMINUS

SARADC

AMUXBUSA

VSSA

VPLUS

VMINUS

SARADC

AMUXBUSA

AMUXBUSB

VPLUS

VMINUS

SARADC
AMUXBUSA

AMUXBUSB

248 PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

SAR ADC

20.3.13 Temperature Sensor Configuration

One on-chip temperature sensor is available for temperature sensing and temperature-based calibration. Differential conver-
sions are not available for temperature sensors (conversion result is undefined). Therefore, always use it in single-ended
mode. The reference is from internal 1.024 V.

A pin or signal can be routed to the SAR ADC in three ways. Table 20-19 lists the methods to route temperature sensors to
SAR ADC. Setting the MUX_FW_TEMP_VPLUS bit (SAR_MUX_SWITCH0[17]) can enable the temperature sensor and con-
nect its output to VPLUS of SAR ADC; clearing this bit disables temperature sensor by cutting its bias current.

Table 20-19. Route Temperature to SAR ADC

Control Methods Setup

Sequencer

DIFFERENTIAL_EN = 0 (SAR_CHANx_CONFIG[8])
VREF_SEL = 0 (SAR_CTRL[6:4])
PORT_ADDR = 7 (SAR_CHANx_CONFIG[6:4])
PIN_ADDR = 0 (SAR_CHANx_CONFIG[2:0])
SWITCH_DISABLE = 0 (SAR_CTRL[30])
SAR_MUX_SWITCH0[16] = 1
SAR_MUX_SWITCH0[17] = 1
SAR_MUX_SWITCH_HW_CTRL[16]= 1
SAR_MUX_SWITCH_HW_CTRL[17]= 1

NEG_SEL = 0 (SAR_CTRL [11:9]) override to 0a

a. For temperature sensor, override NEL_SEG (SAR_CTRL [11:9]) to ‘0’.

Firmware

DIFFERENTIAL_EN = 0 (SAR_CHANx_CONFIG[8])
VREF_SEL = 0 (SAR_CTRL[6:4])
SWITCH_DISABLE = 1 (SAR_CTRL[30])
SAR_MUX_SWITCH0[16] = 1
SAR_MUX_SWITCH0[17] = 1
SAR_MUX_SWITCH_HW_CTRL[16]= 0
SAR_MUX_SWITCH_HW_CTRL[17]= 0

NEG_SEL = 0 (SAR_CTRL [11:9]) override to 0a

DSI

SWITCH_DISABLE = 1 (SAR_CTRL[30])
VREF_SEL = 0 (SAR_CTRL[6:4])
Set DSI Signals:
dsi_cfg_differential=1
dsi_swctrl[1]=1
dsi_swctrl[0]=1
SAR_MUX_SWITCH0[16] = 1
SAR_MUX_SWITCH0[17] = 1
SAR_MUX_SWITCH_HW_CTRL[16]= 1
SAR_MUX_SWITCH_HW_CTRL[17]= 1

NEG_SEL = 0 (SAR_CTRL [11:9]) override to 0a

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B 249

SAR ADC

20.4 Registers

Name Offset Qty. Width Description

SAR_CTRL 0x0000 1 32
Global configuration register

Analog control register

SAR_SAMPLE_CTRL 0x0004 1 32
Global configuration register

Sample control register

SAR_SAMPLE_TIME01 0x0010 1 32
Global configuration register

Sample time specification ST0 and ST1

SAR_SAMPLE_TIME23 0x0014 1 32
Global configuration register

Sample time specification ST2 and ST3

SAR_RANGE_THRES 0x0018 1 32 Global range detect threshold register

SAR_RANGE_COND 0x001C 1 32 Global range detect mode register

SAR_CHAN_EN 0x0020 1 32 Enable bits for the channels

SAR_START_CTRL 0x0024 1 32 Start control register (firmware trigger)

SAR_CHAN_CONFIG 0x0080 8 32 Channel configuration register

SAR_CHAN_WORK 0x0100 8 32 Channel working data register

SAR_CHAN_RESULT 0x0180 8 32 Channel result data register

SAR_CHAN_WORK_VALID 0x0200 1 32 Channel working data register valid bits

SAR_CHAN_RESULT_VALID 0x0204 1 32 Channel result data register valid bits

SAR_STATUS 0x0208 1 32 Current status of internal SAR registers (for debug)

SAR_AVG_STAT 0x020C 1 32 Current averaging status (for debug)

SAR_INTR 0x0210 1 32 Interrupt request register

SAR_INTR_SET 0x0214 1 32 Interrupt set request register

SAR_INTR_MASK 0x0218 1 32 Interrupt mask register

SAR_INTR_MASKED 0x021C 1 32

Interrupt masked request register: If the value is not zero, then the
SAR interrupt signal to the NVIC is high. When read, this register
reflects a bit-wise AND between the interrupt request and mask
registers

SAR_SATURATE_INTR 0x0220 1 32 Saturate interrupt request register

SAR_SATURATE_INTR_SET 0x0224 1 32 Saturate interrupt set request register

SAR_SATURATE_INTR_MASK 0x0228 1 32 Saturate interrupt mask register

SAR_SATURATE_INTR_MASKED 0x022C 1 32 Saturate interrupt masked request register

SAR_RANGE_INTR 0x0230 1 32 Range detect interrupt request register

SAR_RANGE_INTR_SET 0x0234 1 32 Range detect interrupt set request register

SAR_RANGE_INTR_MASK 0x0238 1 32 Range detect interrupt mask register

SAR_RANGE_INTR_MASKED 0x023C 1 32 Range interrupt masked request register

SASR_INTR_CAUSE 0x0240 1 32 Interrupt cause register

SAR_INJ_CHAN_CONFIG 0x0280 1 32 Injection channel configuration register

SAR_INJ_RESULT 0x0290 1 32 Injection channel result register

SAR_MUX_SWITCH0 0x0300 1 32 SARMUX firmware switch controls

SAR_MUX_SWITCH_CLEAR0 0x0304 1 32 SARMUX firmware switch control clear

SAR_MUX_SWITCH_HW_CTRL 0x0340 1 32 SARMUX switch hardware control

SAR_MUX_SWITCH_STATUS 0x0348 1 32 SARMUX switch status

SAR_PUMP_CTRL 0x0380 1 32 Switch pump control

250 PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

SAR ADC

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B 251

21. Low-Power Comparator

PSoC® 4 devices have two low-power comparators. These comparators can perform fast analog signal comparison in all
system power modes except the Stop mode. Refer to the Power Modes chapter on page 87 for details on various device
power modes. The positive and negative inputs can be connected to dedicated GPIO pins or to AMUXBUS-A/AMUXBUS-B.
The comparator output can be read by the CPU through a status register, used as an interrupt or wakeup source, or fed to the
DSI for processing or routing to a GPIO.

21.1 Features
PSoC 4 comparators have the following features:

■ Configurable positive and negative inputs

■ Programmable power and speed

■ Ultra low-power mode support (<4 µA)

■ Optional 10-mV input hysteresis

■ Low-input offset voltage (<4 mV after trim)

■ Wakeup source in Deep-Sleep/Hibernate modes

21.2 Block Diagram
Figure 21-1 shows the block diagram for the low-power comparator.

252 PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

Low-Power Comparator

Figure 21-1. Low-Power Comparator Block Diagram

21.3 How It Works
The following sections describe the operation of the PSoC 4
low-power comparator, including input configuration, power
and speed mode, output and interrupt configuration,
hysteresis, wake up from low-power modes, comparator
clock, and offset trim.

21.3.1 Input Configuration

Inputs to the comparators can be as follows:

■ Both positive and negative inputs from dedicated input
pins.

■ Both positive and negative inputs from any pin through
AMUXBUS.

■ One input from an external pin and another input from an
internally-generated signal. Both inputs can be
connected to either positive or negative inputs of the
comparator. The internally-generated signal is

connected to the comparator input through the analog
AMUXBUS.

■ Both positive and negative inputs from internally-
generated signals. The internally-generated signals are
connected to the comparator input through AMUXBUS-
A/AMUXBUS-B.

From Figure 21-1, note that P0.0 and P0.1 connect to
positive and negative inputs of Comparator 0; P0.2 and P0.3
connect to the inputs of Comparator 1. Also, note that the
AMUXBUS nets do not have a direct connection to the
comparator inputs. Therefore, the comparator connection is
routed to the AMUXBUS nets through the corresponding
input pin. These input pins will not be available for other
purposes when using AMUXBUS for comparator
connections. They should be left open in designs that use
AMUXBUS for comparator input connection. This restriction
also includes routing of any internally-generated signal,
which uses the AMUXBUS for the connection. See the I/O
System chapter on page 63 for more details on connecting
the GPIO to AMUXBUS A/B or setting up the GPIO for
comparator input.

Comparator 0

Comparator 1

Edge Detector

Edge Detector

MMIO Registers

AHB IFAHB

I/0 pad
P0.0

I/0 pad
P0.1

I/0 pad
P0.2

I/0 pad
P0.3

dsi_comp2

comp_intr

In
tr
_c
lr

Active Power Domain

Hibernate Power Domain

Fa
lli
n
g,
 R
is
in
g,
 b
o
th

in
tr
_c
o
m
p
1

in
tr
_c
o
m
p
2

A
M
U
X
B
U
S_
A

A
M
U
X
B
U
S_
B

Not part of Low power comparator
It is in GPIO block

Each GPIO connects to AMUXBUS_A/_B

Sync

Pulse Output
on edge

dsi_comp1Sync

Pulse Output
on edge

Interrupt
Generation

Sy
n
c

Sy
n
c

In
tr
_c
lr

Fa
lli
n
g,
 R
is
in
g,
 b
o
th

Active Power Domain

<To MMIO Registers>

MMIO interface signals
Comparator related signals

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B 253

Low-Power Comparator

21.3.2 Output and Interrupt Configuration

The output of Comparator0 and Comparator1 are available
in the OUT1 bit [6] and OUT2 bit [14], respectively, in the
LPCOMP_CONFIG register (Table 21-1). The comparator
outputs are synchronized to SYSCLK before latching them
to the OUTx bits in the LPCOMP_CONFIG register. The
output of each comparator is connected to a corresponding
edge detector block. This block determines the edge that
triggers the interrupt. The edge selection and interrupt
enable is configured using the INTTYPE1 bits [5:4] and
INTTYPE2 bits [13:12] in the LPCOMP_CONFIG register.
Using the INTTYPEx bits, the interrupt type can be selected
to disabled, rising edge, falling edge, or both edges, as
described in Table 21-1.

Each comparator's output can be individually routed to a pin
or other blocks through DSI (dsi_comp1/dsi_comp2 signals
in Figure 21-1). The comparator output to the DSI can be
configured to be asynchronous, synchronized to SYSCLK,
or a synchronized pulse output on the comparator output's
rising edge. The DSI_BYPASS1 bit [16] and DSI_LEVEL1
bit [17] of the LPCOMP_CONFIG register are used to
configure Comparator0's output to DSI. Similarly,
DSI_BYPASS2 bit [20] and DSI_LEVEL2 bit [21] of the
LPCOMP_CONFIG register are used for Comparator1 DSI
output. See Table 21-1 for details.

During an edge event, the comparator will trigger an
interrupt (intr_comp1/intr_comp2 signals in Figure 21-1).
The interrupt request is registered in the COMP1 bit [0] and
COMP2 bit [1] of the LPCOMP_INTR register for
Comparator0 and Comparator1, respectively. Both
Comparator0 and Comparator1 share a common interrupt
(comp_intr signal in Figure 21-1), which is a logical OR of
the two interrupts and mapped as the low-power comparator
block's interrupt in the CPU NVIC. Refer to the
Interrupts chapter on page 51 for details. If both the
comparators are used in a design, the COMP1 and/or

COMP2 bits of the LPCOMP_INTR register need to be read
in the interrupt service routine to know which one triggered
the interrupt. Alternatively, COMP1_MASK bit [0] and
COMP2_MASK bit [1] of the LPCOMP_INTR_MASK
register can be used to mask the Comparator0 and
Comparator1 interrupts to the CPU. Only the masked
interrupts will be serviced by the CPU. After the interrupt is
processed, the interrupt should be cleared by writing a '1' to
the COMP1 and COMP2 bits of the LPCOMP_INTR register
in firmware. If the interrupt is not cleared, the next compare
event will not trigger an interrupt and the CPU will not be
able to process the event. In Active and Sleep modes, the
dsi_comp1/dsi_comp2 outputs can be routed to UDB
mapped interrupts for processing each comparator's trigger
separately. However, the UDB/DSI routing is not available in
Deep-Sleep and Hibernate modes.

The LPCOMP interrupt (comp1_intr/comp2_intr) is
synchronous with SYSCLK. Clearing dsi_comp1/dis_comp2
and comp1_intr/comp2_intr are all synchronous.

In Active and Sleep modes, dsi_comp1/dsi_comp2 can be
routed to GPIO or other blocks through DSI routing in UDB
with or without synchronization; there is an additional
synchronizer on UDB DSI output. See the Universal Digital
Blocks (UDB) chapter on page 141 for details on the DSI
signal synchronization. In Deep-Sleep and Hibernate
modes, this routing is unavailable because the UDBs are
powered off. In addition, if the dsi_comp1/dsi_comp2 is
routed to the UDB for further processing, the timing depends
on the user's algorithm and synchronizer choice.

LPCOMP_INTR_SET register bits [1:0] can be used to
assert an interrupt for software debugging.

In Deep-Sleep and Hibernate mode, the wakeup interrupt
controller (WIC) can be activated by a comparator edge
event, which then wakes up the CPU. Thus, the LPCOMP
has the capability to monitor a specified signal in low-power
modes.

Table 21-1. Output and Interrupt Configuration in LPCOMP_CONFIG Register

Register[Bit_Pos] Bit_Name Description

LPCOMP_CONFIG[6] OUT1 Current/Instantaneous output value of Comparator0

LPCOMP_CONFIG[14] OUT2 Current/Instantaneous output value of Comparator1

LPCOMP_CONFIG[5:4] INTTYPE1

Sets on which edge Comparator0 will trigger an IRQ

00: Disabled

01: Rising Edge

10: Falling Edge

11: Both rising and falling edges

LPCOMP_CONFIG[13:12] INTTYPE2

Sets on which edge Comparator1 will trigger an IRQ

00: Disabled

01: Rising Edge

10: Falling Edge

11: Both rising and falling edges

LPCOMP_CONFIG[16] DSI_BYPASS1

Comparator0 bypass output synchronization for DSI output

0: Output synchronized to SYSCLK

1: Bypass/output asynchronous

254 PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

Low-Power Comparator

21.3.3 Power Mode and Speed Configuration

The low-power comparators can operate in three power modes:

■ Fast

■ Slow

■ Ultra low-power

The power or speed setting for Comparator0 is configured using MODE1 bits [1:0] in the LPCOMP_CONFIG register. The
power or speed setting for Comparator1 is configured using MODE2 bits [9:8] in the same register. The power consumption
and response time vary depending on the selected power mode; power consumption is highest in fast mode and lowest in
ultra-low-power mode, response time is fastest in fast mode and slowest in ultra-low-power mode. Refer to the device
datasheet for specifications for the response time and power consumption for various power settings.

The comparators are enabled/disabled using ENABLE1 bit [7] and ENABLE2 bit [15] in the LPCOMP_CONFIG register, as
described in Table 21-2.

Note The output of the comparator may glitch when the power mode is changed while comparator is enabled. To avoid this,
disable the comparator before changing the power mode.

LPCOMP_CONFIG[17] DSI_LEVEL1

Comparator0 DSI output level

0: Pulse output - Generates a pulse of width two SYSCLK cycles on a rising edge

1: Level

LPCOMP_CONFIG[20] DSI_BYPASS2

Comparator1 bypass output synchronization for DSI output

0: Output synchronized to SYSCLK

1: Bypass/output asynchronous

LPCOMP_CONFIG[21] DSI_LEVEL2

Comparator1 DSI output level

0: Pulse output - Generates a pulse of width two SYSCLK cycles on a rising edge

1: Level

LPCOMP_INTR[0] COMP1
Comparator0 Interrupt: hardware sets this interrupt when Comparator0 triggers. Write a '1' to
clear the interrupt.

LPCOMP_INTR[1] COMP2
Comparator2 Interrupt: hardware sets this interrupt when Comparator1 triggers. Write a '1' to
clear the interrupt.

LPCOMP_INTR_SET[0] COMP1 Write a '1' to trigger the software interrupt for Comparator0.

LPCOMP_INTR_SET[1] COMP2 Write a 1 to trigger the software interrupt for Comparator1.

Table 21-2. Comparator Power Mode Selection Bits MODE1 and MODE2

Register[Bit_Pos] Bit_Name Description

LPCOMP_CONFIG[1:0] MODE1

Compartor0 power mode selection

00: Slow operating mode (uses less power)

01: Fast operating mode (uses more power)

10: Ultra low-power operating mode (uses lowest possible power)

LPCOMP_CONFIG[9:8] MODE2

Compartor1 power mode selection

00: Slow operating mode (uses less power)

01: Fast operating mode (uses more power)

10: Ultra low-power operating mode (uses lowest possible power)

LPCOMP_CONFIG[7] ENABLE1

Comparator0 enable bit

0: Disables Comparator0

1: Enables Comparator0

LPCOMP_CONFIG[15] ENABLE2

Comparator1 enable bit

0: Disables Comparator1

1: Enables Comparator1

Table 21-1. Output and Interrupt Configuration in LPCOMP_CONFIG Register

Register[Bit_Pos] Bit_Name Description

http://www.cypress.com/?rID=108039
http://www.cypress.com/?rID=108039

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B 255

Low-Power Comparator

21.3.4 Hysteresis

For applications that compare signals close to each other
and slow changing signals, hysteresis helps to avoid
oscillations at the comparator output when the signals are
noisy. For such applications, a fixed 10-mV hysteresis may
be enabled in the comparator block.

The 10-mV hysteresis level is enabled/disabled by using the
HYST1 bit [2] and HYST2 bit [10] in the LPCOMP_CONFIG
register, as described in Table 21-3.

Table 21-3. Hysteresis Control Bits HYST1 and HYST2

21.3.5 Wakeup from Low-Power Modes

The comparator is operational in the device’s low-power
modes, including Sleep, and Deep-Sleep, and Hibernate
modes. The comparator output interrupt can wake the
device from Sleep, and Deep-Sleep, and Hibernate modes.
The comparator should be enabled in the
LPCOMP_CONFIG register, the INTTYPEx bits in the
LPCOMP_CONFIG register should not be set to disabled,
and the INTR_MASKx bit should be set in the
LPCOMP_INTR_MASK register for the corresponding
comparator to wake the device from low-power modes. The
features that are not available during the Deep-Sleep and
Hibernate modes include:

■ Comparisons involving AMUXBUS connections

■ Routing comparator output through DSI

In the Deep-Sleep or Hibernate power mode, a compare
event on either Comparator0 or Comparator1 output will
generate a wakeup interrupt. The INTTYPEx bits in the
LPCOMP_CONFIG register should be configured, as
required, for the corresponding comparator to wake the
device from low-power modes. The mask bits in the
LPCOMP_INTR_MASK register is used to select whether
one or both of the comparator's interrupt is serviced by the
CPU.

21.3.6 Comparator Clock

The comparator uses the system main clock SYSCLK as
the clock for interrupt synchronization.

21.3.7 Offset Trim

The comparator offset is trimmed at the factory to less than
4.0 mV. The trim is a two-step process, trimmed first at
common mode voltage equal to 0.1 V, then at common
mode voltage equal to VDD–0.1 V. Offset voltage is

guaranteed to be less than 10.0 mV over the input voltage
range of 0.1 V to VDD–0.1 V. For normal operation, further
adjustment of trim values is not recommended.

If a tighter trim is required at a specific input common mode
voltage, a trim may be performed at the desired input
common mode voltage. The comparator offset trim is
performed using the LPCOMP_TRIM1/2/3/4 registers.
LPCOMP_TRIM1 and LPCOMP_TRIM2 are used to trim
comparator 0. LPCOMP_TRIM3 and LPCOMP_TRIM4 are
used to trim comparator 1. The bit fields that change the trim
values are TRIMA bits [4:0] in LPCOMP_TRIM1 and
LPCOMP_TRIM3, and TRIMB bits [3:0] in LPCOMP_TRIM2
and LPCOMP_TRIM4. TRIMA bits are used to coarse tune
the offset; TRIMB bits are used to fine tune. The use of
TRIMB bits for offset correction is restricted to slow mode of
comparator operation.

Any standard comparator offset trim procedure can be used
to perform the trimming. The following method can be used
to improve the offset at a given reference/common mode
voltage input.

1. Short the comparator inputs externally and connect the
voltage reference, Vref, to the input.

2. Set up the comparator for comparison, turn off hystere-
sis, and check the output.

3. If the output is high, the offset is positive. Otherwise, the
offset is negative. Follow these steps to tune the offset:

a. Tune the TRIMA bits[4:0] until the output switches
direction. TRIMA bits[3:0] control the amount of off-
set and TRIMA bit[4] controls the polarity of offset ('1'
indicates positive offset and '0' indicates negative off-
set).

b. When the tuning of TRIMA bits is complete, tune the
TRIMB bits[3:0] until the output switches direction
again. The TRIMB bit tuning is valid only for slow
mode of comparator operation. TRIMB bit[3] controls
the polarity of offset. Increasing TRIMB bits [2:0]
reduces the offset.

c. After completing step 3-b, the values available in the
TRIMA and TRIMB bits will be the closest possible
trim value for that particular Vref.

Register[Bit_Pos] Bit_Name Description

LPCOMP_CONFIG
[2]

HYST1

Enable/Disable 10 mV hystere-
sis to Comparator0

- 0: Enable Hysteresis

- 1: Disable Hysteresis

LPCOMP_CONFIG
[10]

HYST2

Enable/Disable 10 mV hystere-
sis to Comparator1

- 0: Enable Hysteresis

- 1: Disable Hysteresis

256 PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

Low-Power Comparator

21.4 Register Summary

Table 21-4. Low-Power Comparator Register Summary

Register Function

LPCOMP_ID Includes the information of LPCOMP controller ID and revision number

LPCOMP_CONFIG LPCOMP configuration register

LPCOMP_INTR LPCOMP interrupt register

LPCOMP_INTR_SET LPCOMP interrupt set register

LPCOMP_INTR_MASK LPCOMP interrupt request mask register

LPCOMP_INTR_MASKED LPCOMP masked interrupt output register

LPCOMP_TRIM1 Trim fields for comparator 0

LPCOMP_TRIM2 Trim fields for comparator 0

LPCOMP_TRIM3 Trim fields for comparator 1

LPCOMP_TRIM4 Trim fields for comparator 1

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B 257

22. Continuous Time Block mini (CTBm)

The Continuous Time Block mini (CTBm) provides discrete operational amplifiers (opamps) inside the chip for use in continu-
ous-time signal chains. Each CTBm block includes a switch matrix for input/output configuration, two identical opamps, which
are also configurable as two comparators, a charge pump inside each opamp, and a digital interface for comparator output
routing, switch controls, and interrupts. The PSoC 4100M/4200M family has two CTBm blocks - four discrete opamps. Addi-
tionally, the CTBm blocks can also operate in Deep-Sleep power mode.

22.1 Features

The opamps in the PSoC 4 CTBm block have the following features:

■ Discrete, high-performance, and highly configurable on-chip amplifiers

■ Programmable power, bandwidth, compensation, and output drive strength

■ 1-mA or 10-mA selectable output current drive capability

■ 6-MHz gain bandwidth for 20-pF load

■ Less than 1-mV offset with trim

■ Support for opamp follower mode

■ Comparator mode with optional 10-mV hysteresis

■ Buffer/pre-amplifier for SAR inputs

■ Rail-to-rail within 0.2 V of VSS or VDDA for 1-mA load

■ Rail-to-rail within 0.5 V of VSS or VDDA for 10-mA load

■ Slew rate 4 V/µs for 50-pF load

■ Support in Deep-Sleep device power mode

22.2 Block Diagram

Figure 22-1 shows the block diagram for the CTBMx – CTMB0 and CTBM1 block available in PSoC 4 devices.

258 PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

Continuous Time Block mini (CTBm)

Figure 22-1. CTBm Block Diagram

22.3 How It Works

As the block diagram shows, each CTBm has two identical
opamps and a switch routing matrix. Each opamp has one
input and three output stages, all of which share a common
input stage, as shown in Figure 22-1; only one of them can
be selected at a time. The output stage can be operated as
Class-A(1X), Class-AB(10X), or comparator. The other con-
figurable features are power and speed, compensation, and
switch routing control.

To use the CTBm block, the first step is to set up external
components (such as resistors), if required. Then, enable
the block by setting the CTBMx_CTB_CTRL [31] bit. To
have almost rail-to-rail input range and minimal distortion
common mode input, there is one charge pump inside each
opamp. The charge pump can be enabled by setting the
CTBMx_OA_RES0_CTRL [11] bit for opamp0 and
CTBMx_OA_RES1_CTRL [11] bit for opamp1 in CTBMx.

After enabling the opamps and charge pumps, follow these
steps to set up the amplifier:

1. Configure power mode

2. Configure output strength

3. Configure compensation

4. Configure input switch

5. Configure output switch, especially when opamp output
needs to be connected to SAR ADC

Follow these steps to set up a comparator:

1. Configure the power mode

2. Configure the input switch

3. Configure the comparator output circuitry, as required -
interrupt generation, DSI output, and so on

4. Configure hysteresis and enable the comparator

22.3.1 Power Mode Configuration

The opamp can operate in three power modes – low,
medium, and high. CTBm adjusts the power consumed by
adjusting the reference currents coming into the opamp.
Power modes are configured using the PWR_MODE bits
[1:0] in CTBMx_OA_RESy_CTRL. The slew rate and gain
bandwidth are maximum in high-power mode and minimum
in low-power mode. Note that power mode configuration
also affects the maximum output drive capability (IOUT) in 1X

10X

1X

Pn.0

AMUXBUSA

Pn.6

Pn.1

sarbus0

Pn.2

10X

1X

Pn.5

AMUXBUSB

Pn.7

Pn.4

sarbus1

Pn.3

OPAMP 0

OPAMP 1

sarbus0

CTBMx_comp0_out

CTBMx_comp1_out

Clk_comp

Switch: CTBm Regsiter control Swtich: CTBm Regsiter + SARADC register+ DSI control

SW1

SW2

SW3

Note: 10X or 1X output driver cannot be on at the same time.

Sync
Edge Detector

MUX

Clk_comp

CTBMx_dsi_comp1

Interrupt Request

‘Pn’ – ‘P1’ for CTB0 and ‘P5’ for CTB1

Pulse Output
on Edge

Sync
Edge Detector

MUX
CTBMx_dsi_comp0

Interrupt Request

Pulse Output
on Edge

‘x’ (in CTBMx) – ‘0’ for CTBM0 and ‘1’ for CTBM1

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B 259

Continuous Time Block mini (CTBm)

mode. See Table 22-1 for details. See the device datasheet
for gain bandwidth, slew rate, and IOUT specifications in var-

ious power modes.

Note: 'y' denotes Opamp1/0 (y = 1 for Opamp1 and 0 for
Opamp0) in CTBMx.

22.3.2 Output Strength Configuration

The output driver of each opamp can be configured to inter-
nal driver (Class A/1X driver) or external driver (Class AB/
10X driver). 1X and 10X drivers are mutually exclusive –
they cannot be active at the same time. 1X output driver is
suited to drive smaller on-chip capacitive and resistive loads
at higher speeds. The 10X output driver is useful for driving
large off-chip capacitive and resistive loads. The 1X driver
output is routed to sarbus 0/1 and 10X driver output is
routed to an external pin. Each driver mode has a low,
medium, or high power mode, as shown in Table 22-1.

The CTBMx_OA_RESy_CTRL[2] bit is used to select
between the 10X and 1X output capability (0: 1X, 1: 10X). If
the output of the opamp is connected to the SAR ADC, it is
recommended to choose the 1X output driver. If the output
of the opamp is connected to an external pin, then, choose
the 10X output driver. In special instances, to connect the
output to an external pin with 1X output driver or an internal
load (for example, SAR ADC) with 10X output driver, set
CTBMx_OAy_SW [21] to ‘1’. However, Cypress does not
guarantee performance in this case.

Table 22-2 summarizes the bits used to configure the
opamp output drive strength and power modes.

Table 22-1. Output Driver versus Power Mode

Power Mode IOUT

Drive Capability

CTBMx_OA_RESy_CTRL[1:0]

00
(disable)

01
(low)

10
(medium)

11
(high)

External Driver (10X) Off 10 mA 10 mA 10 mA

Internal Driver (1X) Off 100 µA 400 µA 1 mA

Table 22-2. Output Strength and Power Mode Configuration in CTBM Registers

Register[Bit_Pos] Bit_Name Description

CTBMx_CTB_CTRL[31] ENABLE

CTBM power mode selection

0: CTBM is disabled

1: CTBM is enabled

CTBMx_OA_RES0_CTRL [11] OA0_PUMP_EN

Opamp0 pump enable bit 0:

Opamp0 pump is disabled in CTBMx

1: Opamp0 pump is enabled in CTBMx

CTBMx_OA_RES1_CTRL [11] OA1_PUMP_EN

Opamp1 pump enable bit

0: Opamp1 pump is disabled in CTBMx

1: Opamp1 pump is enabled in CTBMx

CTBMx_OA_RES0_CTRL [1:0] OA0_PWR_MODE

Opamp0 power mode select bits

00: Opamp0 is OFF in CTBMx

01: Opamp0 is in low power mode in CTBMx

10: Opamp0 is in medium power mode in CTBMx

11: Opamp0 is in high power mode in CTBMx

CTBMx_OA_RES1_CTRL [1:0] OA1_PWR_MODE

Opamp1 power mode select bits

00: Opamp1 is OFF in CTBMx

01: Opamp1 is in low power mode in CTBMx

10: Opamp1 is in medium power mode in CTBMx

11: Opamp1 is in high power mode in CTBMx

CTBMx_OA_RES0_CTRL [2] OA0_DRIVE_STR_SEL

Opamp0 output drive strength select bits

0: Opamp0 output drive strength is 1X in CTBMx

1: Opamp0 output drive strength is 10X in CTBMx

CTBMx_OA_RES1_CTRL [2] OA1_DRIVE_STR_SEL

Opamp1 output drive strength select bits

0: Opamp1 output drive strength is 1X in CTBMx

1: Opamp1 output drive strength is 10X in CTBMx

http://www.cypress.com/?rID=108039

260 PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

Continuous Time Block mini (CTBm)

22.3.3 Compensation

Each opamp also has a programmable compensation capacitor block, which allows optimizing the stability of the opamp per-
formance based on output load. The compensation of each opamp is controlled by the respective CTBMx_OAy_COMP_TRIM
register, as explained in Table 22-3. Note that all the GBW slew rate specifications in the device datasheet are applied for all
compensation trims.

22.3.4 Switch Control

Each CTBm has many switches to configure the opamp
input and output. Most of them are controlled by configuring
CTBm registers (CTBMx_OA0_SW, CTBMx_OA1_SW),
except three switches, which are used to connect the output
of opamps to SAR ADC through sarbus0 and sarbus1. They
must be controlled by SAR ADC registers, CTBm registers,
and DSI signals.

Switches can be closed by setting the corresponding bit in
register CTBMx_OAy_SW; clearing them will cause the cor-
responding switches to open. Writing ‘1’ to
CTBMx_OAy_SW_CLEAR can clear the corresponding bit
in CTBMx_OAy_SW. See the PSoC 4100M/4200M Family:
PSoC 4 Registers TRM for details on the switches and the
connections they enable.

22.3.4.1 Input Configuration

Positive and negative input to the operational amplifier can
be selected from several options through analog switches.
These switches serve to connect the opamp inputs from the
external pins or AMUX buses, or to form a local feedback
loop (for buffer function). Each opamp has a switch connect-
ing to one of the two AMUXBUS line: Opamp0 connects to
AMUXBUS-A and Opamp1 connects to AMUXBUS-B of
each CTBm.

Note Only one switch should be closed for the positive and
negative input paths; otherwise, different input source may
short together.

■ Positive input: Both opamp0 and opamp1 of each CTBm
have three positive input options through analog
switches: two external pins and one AMUXBUS line. See
Table 22-4 for details.

■ Negative input: Both opamp0 and opamp1 of each CTBm have two negative input options through analog switches: one
external pin or output feedback, which is controlled by the CTBMx_OAy_SW register. Table 22-5 shows the control bits.

Table 22-3. Opampy (Opamp0 or Opamp1) Compensation Bits in CTMB

Register[Bit_Pos] Bit_Name Description

CTBMx_OAy_COMP_TRIM[1:0] OAy_COMP_TRIM

Opampy compensation trim bits

00: No compensation

01: Minimum compensation, high speed, and low stability in CTBMx

10: Medium compensation, balanced speed, and stability in CTBMx

11: Maximum compensation, low speed, and high stability in CTBMx

Table 22-4. Positive Input Selection

Positive Input Switch Control Bit Description

Opamp0

AMUXBUSA CTBMx_OA0_SW [0] 0: open 1: close switch

Pn.0a CTBMx_OA0_SW [2] 0: open 1: close switch

Pn.6 CTBMx_OA0_SW [3] 0: open 1: close switch

Opamp1

AMUXBUSB CTBMx_OA1_SW [0] 0: open 1: close switch

Pn. 5 CTBMx_OA1_SW [1] 0: open 1: close switch

Pn.7 CTBMx_OA1_SW [4] 0: open 1: close switch

a. Pn = P1 for CTBm0 and P5 for CTBm1

Table 22-5. Negative Input Selection

Negative Input Switch Control Bit Description

Opamp0
Pn.1a

a. Pn = P1 for CTBm0 and P5 for CTBm1

CTBMx_OA0_SW [8] 0: open 1: close switch

Opamp0 output feedback through 1X output driver CTBMx_OA0_SW [14] 0: open 1: close switch

Opamp1
Pn.4 CTBMx_OA1_SW [8] 0: open 1: close switch

Opamp1 output feedback through 1X output driver CTBMx_OA1_SW [14] 0: open 1: close switch

http://www.cypress.com/?rID=108039
http://www.cypress.com/?rid=111232
http://www.cypress.com/?rid=111232

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B 261

Continuous Time Block mini (CTBm)

22.3.4.2 Output Configuration

Each opamp’s output is connected directly to a fixed pin; no
additional setup is needed. Optionally, it can be connected
to sarbus0 or sarbus1 through three switches (SW1/2/3).
Each CTBm’s opamp0 output can be connected to sarbus0
and opamp1 can be connected to sarbus0 or sarbus1.
sarbus0 and sarbus1 are intended to connect opamp output
to the SAR ADC input mux. The three output routing
switches to sarbus are controlled by the CTBm register,
SAR ADC register, and DSI signals together; the other
switches can be controlled only by CTBm register.

The following truth tables (Table 22-6, Table 22-7, and
Table 22-8) show the control logic of the three switches.
PORT_ADDR, PIN_ADDR, and DIFFERENTIAL_EN are
from SAR_CHANx_CONFIG [6:4], SAR_CHANx_CONFIG
[2:0], and SAR_CHANx_CONFIG [2:0], respectively. Either
PORT_ADDR =0 or PIN_ADDR = 0 will set SW[n]=0.
CTBMx_SW_HW_CTRL bit [2] or [3] should be set when
using the SAR register or a DSI signal to control switches.
CTBMx_OAy_SW[18]/[19] can mask the other control bits –
if CTBMx_OAy_SW[18]/[19] = 0, SW[n] = 0.

Register CTBMx__SW_STATUS [30:28] gives the current
switch status of SW1/2/3.

Table 22-6. Truth Table of SW1 Control Logic

PORT_ADDR PIN_ADDR
CTBMx_SW_HW_CTRL[

2]
dsi_out[2] CTBMx_OA0_SW[18] SW1

X X X X 0 0

X 0 1 0 1 0

0 X 1 0 1 0

X X X 1 1 1

X X 0 X 1 1

1 2 X X 1 1

Table 22-7. Truth Table of SW2 Control Logic

DIFFERENTIAL_
EN

PORT_ADDR PIN_ADDR
CTBMx_SW_HW_CTRL[

3]
dsi_out[3]

CTBMx_OA0_SW[18
]

SW2

X X X X X 0 0

X X 0 1 0 1 0

X 0 X 1 0 1 0

1 X X X 0 1 0

X X X 0 X 1 1

X X X X X 1 1

0 1 3 X X 1 1

Table 22-8. Truth Table of SW3 Control Logic

DIFFERENTIAL_
EN

PORT_ADDR PIN_ADDR
CTBMx_SW_HW_CTRL[

3]
dsi_out[3]

CTBMx_OA0_SW[1
8]

SW3

X X X X X 0 0

X X 0 1 0 1 0

X 0 X 1 0 1 0

0 X X X 0 1 0

X X X 0 X 1 1

X X X X X 1 1

1 1 2 X X 1 1

262 PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

Continuous Time Block mini (CTBm)

22.3.4.3 Comparator Mode

Each opamp can be configured as a comparator by setting
the respective CTBMx_OA_RESy_CTRL[4] bit. Note that
enabling the comparator completely disables the compensa-
tion capacitors and shuts down the Class A (1X) and Class
AB (10X) output drivers. The comparator has the following
features:

■ Optional 10-mV input hysteresis

■ Configurable power/speed

■ Optional DSI output synchronization

■ Offset trimmed to less than 1 mV

■ Configurable edge detection (rising/falling/both/disable)

22.3.4.4 Comparator Configuration

The hysteresis of 10 mV ±5 percent can be enabled in one
direction (low to high). Input hysteresis can be enabled by
setting CTBMx_OA_RESy_CTRL[5]. The two comparators

in each CTBm block also have three power modes: low,
medium, and high, controlled by setting
CTBMx_OA_RESy_CTRL [1:0]. Power modes differ in
response time and power consumption; power consumption
is maximum in fast mode and minimum in ultra-low-power
mode. Exact specifications for power consumption and
response time are provided in the datasheet.

The comparator output is routed to the DSI with optional
synchronization. The synchronization with comparator clock
(system AHB clock) can be configured in
CTBMx_OA_RESy_CTRL[6].

The output state of comparator0 and comparator1 are
stored in CTBMx_COMP_STAT[0] and
CTBMx_COMP_STAT[16], respectively.

Table 22-9 summarizes various bits used to configure the
comparator mode in the CTBM block.

22.3.4.5 Comparator Interrupt

The comparator output is connected to an edge detector
block, which is used to detect the edge (disable/rising/falling/
both) that generates interrupt. It can be configured by the
CTBMx_OA_RESy_CTRL[9:8] bits.

Each comparator has a separate IRQ. CTBMx_INTR [0] is
for comparator0 IRQ, CTBMx_INTR [1] is for comparator1
IRQ. Though each comparator of each CTBM have different
IRQ bits, they all share a single CTBM ISR mapped in the
CPU NVIC. See the Interrupts chapter on page 51 for
details. You can check which CTBM's comparator(s) trig-
gered the ISR by polling the CTBMx_INTR bits.

Each interrupt has an interrupt mask bit in the
CTBMx_INTR_MASK register. By setting the interrupt mask
low, the corresponding interrupt source is ignored. The
CTBm comparator interrupt to the NVIC will be raised if logic

AND of the interrupt flags in CTBMx_INTR registers and the
corresponding interrupt masks in CTBMx_INTR_MASK reg-
ister is 1.

Writing a ‘1’ to the CTBMx_INTR bit [1:0] can clear corre-
sponding interrupt.

For firmware convenience, the intersection (logic AND) of
the interrupt flags and the interrupt masks is also made
available in the CTBMx_INTR_MASKED register.

For verification and debug purposes, a set bit is provided for
each interrupt in CTBMx_INTR_SET register. This allows
the firmware to raise the interrupt without a real comparator
switch event.

Table 22-9. Comparator Mode and Configuration Register Settings

Register[Bit_Pos] Bit_Name Description

CTBMx_OA_RESyy_CTRL[4] OAy_COMP_EN

Opampy comparator enable bit

0: Comparator mode is disabled in opampy in CTBMx

1: Comparator mode is enabled in opampy in CTBMx

CTBMx_OA_RESy_CTRL[5] OAy_HYST_EN

Opampy Comparator hysteresis enable bit

0: Hysteresis is disabled in opampy in CTBMx

1: Hysteresis is enabled in opampy in CTBMx

CTBMx_OA_RESy_CTRL[6]
OAy_BYPASS_DSI_SYN
C

Opampy bypass comparator output synchronization for DSI (trigger)
output

0: Synchronize (level or pulse)

1: Bypass

CTBMx_OA_RESy_CTRL[7] OAy_ DSI_LEVEL

Opampy comparator DSI (trigger) output synchronization level

0: Pulse

1: Level

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B 263

Continuous Time Block mini (CTBm)

22.3.4.6 Deep-Sleep Mode Operation

In Deep-Sleep mode, the block that provides the bias cur-
rent, reference voltage, and IMO clock is turned off. As a
result, the CTBm functionality, which relies on the bias cur-
rent and IMO clock for its operation is not available. See the
Power Modes chapter on page 87 for details on various
power modes and blocks available in each mode. To sup-
port the functionality of the CTBm during deep sleep, an
alternate bias current is generated by a special block called
Deep-Sleep Amplifier Bias (DSAB) block. This allows the
opamps in the CTBm to be functional in Deep-Sleep mode.

Figure 22-2 shows the architecture of the DSAB block. This
block receives the Active mode bias current as input. It out-
puts the bias current that is fed to the opamp bias circuitry.
In Active mode, the DSAB block acts similar to a pass-
through block and routes the bias current from the input to

the output. In Deep-Sleep mode, if enabled, the DSAB gen-
erates the alternate bias current, attenuates the output to a
user-selected value, and provides the bias current for the
CTBm at its output. If the DSAB block is disabled, the output
is always connected to the input bias current and the alter-
nate bias current is not generated during deep sleep. The
opamps will not be functional in Deep-Sleep mode, if the
DSAB block is disabled. The ENABLED bit [31] of the
PASS_DSAB_DSAB_CTRL register enables/disables the
block; the CURRENT_SEL bits [5:0] selects the output bias
current value. The value selected is CURRENT_SEL ×
0.075 uA (±5 percent). The SEL_OUT bit[8] is used to con-
trol the selection between the two bias currents, which can
be routed to the CTBm bias. Table 22-10 summarizes the bit
configuration settings of the PASS_DSAB_DSAB_CTRL
register.

Figure 22-2. Deep-Sleep Amplifier Bias Block Diagram

This feature is useful in designs that require the opamp-
based circuitry to remain active in low-power modes, such
as Deep-Sleep, to save power. For instance, in a battery-
operated system (such as a heart-rate monitor) that requires
always-on opamps, substantial power savings can be
achieved if the rest of the chip can go into Deep-Sleep mode
and only wake up as needed. Note that the bias current pro-
vided by the DSAB block does not meet the accuracy and
stability of the Active mode bias current. In addition, the
DSAB does not generate an alternate clock. As a result,
none of the switch or opamp-related charge pumps are acti-
vated. Consequently, the highest input common-mode volt-
age of the opamps is limited to approximately VDDA – 1.3 V.
In addition, because of the unavailability of switch pumps
(required for analog switches when operating below 3.3 V),
the on-resistance of the analog switches increase beyond
normal specification as the supply voltage drops below

3.3 V. It is justifiable for the analog switches to have higher
on-resistance as long as the signal speeds are low. Thus,
VDDA can go as low as ~2.8 V before the analog switches
become too resistive. This will eventually set the lowest-pos-
sible supply voltage. However, it is recommended to use
VDDA of 3.3 V or greater when using opamps in Deep-Sleep
mode. See the device datasheet for opamp specifications
during Deep-Sleep mode.

To enable the opamps in Deep-Sleep mode, set the
DEEPSLEEP_ON bit [30] of the
CTBMx_CTBM_CTB_CTRL register. This enables both the
opamps of the CTBMx during deep sleep. The deep-sleep
operation of the CTBm also requires the DSAB block to be
enabled.

Deep‐Sleep Bias current
generator

Deep‐Sleep Bias Current
Generator

Attenuator

DSAB

DSAB Input –
Active mode
bias current

DSAB Output –
CTBM bias

current

dsab_ibias

6

ENABLED bit[31]

CURRENT_SEL
bits[5:0]

SEL_OUT bit[8]

0

1

http://www.cypress.com/?rID=108039

264 PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

Continuous Time Block mini (CTBm)

22.4 Register Summary

Table 22-10. DSAB and CTBM Deep-Sleep Configuration Register Settings

Register[Bit_Pos] Bit_Name Description

PASS_DSAB_DSAB_CTRL [5:0] CURRENT_SEL Current selection for the dsab_ibias; dsab_ibias = CURRENT_SEL × 0.075 µA (±5%)

PASS_DSAB_DSAB_CTRL [8] SEL_OUT

CTBm bias current selection

0: Bypass DSAB and use active mode bias current

1: Use dsab_ibias as the CTBm bias current

PASS_DSAB_DSAB_CTRL [31] ENABLED

Enable/disable DSAB bias generator

0: DSAB block is disabled and the CTBm bias current is connected to the Active
mode bias current

1: DSAB block is enabled and the CTBm bias current is controlled by the SEL_OUT
signal

CTBMx_CTBM_CTB_CTRL [30] DEEPSLEEP_ON

Enable/disable the CTBMx functionality in Deep-Sleep mode

0: Enabled

1: Disabled

Table 22-11. Register Summary

Name Description

CTBMx_CTRL Global CTBm block enable

CTBMx_OA_RES0_CTRL Opamp0 control register

CTBMx_OA_RES1_CTRL Opamp1 control register

CTBMx_COMP_STAT Comparator status

CTBMx_INTR Interrupt request register

CTBMx_INTR_SET Interrupt request set register

CTBMx_INTR_MASK Interrupt request mask

CTBMx_INTR_MASKED Interrupt request masked

CTBMx_OA0_SW Opamp0 switch control

CTBMx_OA0_SW_CLEAR Opamp0 switch control clear

CTBMx_OA1_SW Opamp1 switch control

CTBMx_OA1_SW_CLEAR Opamp1 switch control clear

CTBMx_SW_HW_CTRL CTBm hardware control enable

CTBMx_SW_STATUS CTBm bus switch control status

CTBMx_OA0_OFFSET_TRIM Opamp0 trim control

CTBMx_OA0_SLOPE_OFFSET_TRIM Opamp0 trim control

CTBMx_OA0_COMP_TRIM Opamp0 trim control

CTBMx_OA1_OFFSET_TRIM Opamp1 trim control

CTBMx_OA1_SLOPE_OFFSET_TRIM Opamp1 trim control

CTBMx_OA1_COMP_TRIM Opamp1 trim control

PASS_DSAB_DSAB_CTRL DSAB control register

PASS_DSAB_TRIM IBIAS trim register

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B 265

23. LCD Direct Drive

The PSoC® 4 Liquid Crystal Display (LCD) drive system is a highly configurable peripheral that allows the PSoC device to
directly drive STN and TN segment LCDs.

23.1 Features
The PSoC 4 LCD segment drive block has the following features:

■ Supports up to 47 segments and eight commons (mux ratio 1:4)

■ Supports Type A (standard) and Type B (low-power) drive waveforms

■ Any GPIO can be configured as a common or segment

■ Supports five drive methods:

❐ Digital correlation

❐ PWM at 1/2 bias

❐ PWM at 1/3 bias

❐ PWM at 1/4 bias

❐ PWM at 1/5 bias

■ Ability to drive 3-V displays from 1.8 V VDD in Digital Correlation mode

■ Operates in active, sleep, and deep-sleep modes

■ Digital contrast control

23.2 LCD Segment Drive Overview
A segmented LCD panel has the liquid crystal material between two sets of electrodes and various polarization and reflector
layers. The two electrodes of an individual segment are called commons (COM) or backplanes and segment electrodes
(SEG). From an electrical perspective, an LCD segment can be considered as a capacitive load; the COM/SEG electrodes
can be considered as the rows and columns in a matrix of segments. The opacity of an LCD segment is controlled by varying
the root-mean-square (RMS) voltage across the corresponding COM/SEG pair.

The following terms/voltages are used in this chapter to describe LCD drive:

■ VRMSOFF: The voltage that the LCD driver can realize on segments that are intended to be off.

■ VRMSON: The voltage that the LCD driver can realize on segments that are intended to be on.

■ Discrimination Ratio (D): The ratio of VRMSON and VRMSOFF that the LCD driver can realize. This depends on the type of

waveforms applied to the LCD panel. Higher discrimination ratio results in higher contrast.

Liquid crystal material does not tolerate long term exposure to DC voltage. Therefore, any waveforms applied to the panel
must produce a 0-V DC component on every segment (on or off). Typically, LCD drivers apply waveforms to the COM and
SEG electrodes that are generated by switching between multiple voltages. The following terms are used to define these
waveforms:

■ Duty: A driver is said to operate in 1/M duty when it drives 'M' number of COM electrodes. Each COM electrode is effec-
tively driven 1/M of the time.

■ Bias: A driver is said to use 1/B bias when its waveforms use voltage steps of (1/B) × VDRV. VDRV is the highest drive
voltage in the system (equals to VDD in PSoC 4). PSoC 4 supports 1/2, 1/3, 1/4, and 1/5 biases in PWM drive modes.

■ Frame: A frame is the length of time required to drive all the segments. During a frame, the driver cycles through the com-
mons in sequence. All segments receive 0-V DC (but non-zero RMS voltage) when measured over the entire frame.

266 PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

LCD Direct Drive

PSoC 4 supports two different types of drive waveforms in
all drive modes. These are:

■ Type-A Waveform: In this type of waveform, the driver
structures a frame into M sub-frames. 'M' is the number
of COM electrodes. Each COM is addressed only once
during a frame. For example, COM[i] is addressed in
sub-frame i.

■ Type-B Waveform: The driver structures a frame into
2M sub-frames. The two sub-frames are inverses of
each other. Each COM is addressed twice during a
frame. For example, COM[i] is addressed in sub-frames i
and M+i. Type-B waveforms are slightly more power effi-
cient because it contains fewer transitions per frame.

23.2.1 Drive Modes

PSoC 4 supports the following drive modes.

■ PWM drive at 1/2 bias

■ PWM drive at 1/3 bias

■ PWM drive at 1/4 bias with high-frequency clock input

■ PWM drive at 1/5 bias with high-frequency clock input

■ Digital correlation

23.2.1.1 PWM Drive

In PWM drive mode, multi-voltage drive signals are gener-
ated using a PWM output signal together with the intrinsic
resistance and capacitance of the LCD. Figure 23-1 illus-
trates this.

Figure 23-1. PWM Drive (at 1/3 Bias)

The output waveform of the drive electronics is a PWM waveform. With the Indium Tin Oxide (ITO) panel resistance and the
segment capacitance to filter the PWM, the voltage across the LCD segment is an analog voltage, as shown in Figure 23-1.
This figure illustrates the generation of a 1/3 bias waveform (four commons and voltage steps of VDD/3).

The PWM is derived from either ILO (32 kHz, low-speed operation) or IMO (high-speed operation). The generated analog
voltage typically runs at very low frequency (~ 50 Hz) for segment LCD driving.

Figure 23-2 and Figure 23-3 illustrate the Type A and Type B waveforms for COM and SEG electrodes for 1/2 bias and 1/4
duty. Only COM0/COM1 and SEG0/SEG1 are drawn for demonstration purpose. Similarly, Figure 23-4 and Figure 23-5 illus-
trate the Type A and Type B waveforms for COM and SEG electrodes for 1/3 bias and 1/4 duty.

PWM Generator

PWM Generator

SEG

COM

GPIO Output Impedance ITO Panel Resistance LCD Segment
Capacitance

VPWM VLCD

Vddd

Vddd

2/3 Vddd

1/3 Vddd

0

0

t

t

VPWM

VLCD

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B 267

LCD Direct Drive

Figure 23-2. PWM1/2 Type-A Waveform Example

VDD

0
COM0 -SEG0

VDD

0

VDD

0

VDD

0

t0 t1 t2 t3

Resulting voltage across segments

COM0 -SEG1

COM1 -SEG0

COM1 -SEG1

Segment On:
VRMS = 0.661 VDD

(VDC = 0)

Segment On:
VRMS = 0.661 VDD

Segment Off:
VRMS = 0.433 VDD

Segment Off:
VRMS = 0.433 VDD

Discrimination ratio:
D = 0.661/0.433 = 1.527Segment is On

Segment is Off

-VDD

-VDD

-VDD

-VDD

VDD

1/2 VDD

0

COM0

VDD

1/2 VDD

0

COM1

VDD

1/2 VDD

0

SEG0

VDD

1/2 VDD

0

SEG1

t0 t1 t2 t3

One ‘Frame’ of Type A Waveform
(addresses all segments once)

One Frame

COM / SEG is selected

COM / SEG is not selected

268 PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

LCD Direct Drive

Figure 23-3. PWM1/2 Type-B Waveform Example

VDD

0COM0 -SEG0

VDD

0

VDD

0

VDD

0

t0 t1 t2 t3

Resulting voltage across segments

COM0 -SEG1

COM1 -SEG0

COM1 -SEG1

Segment On:
VRMS = 0.661 VDD

(VDC = 0)

Segment On:
VRMS = 0.661 VDD

Segment Off:
VRMS = 0.433 VDD

Segment Off:
VRMS = 0.433 VDD

Discrimination ratio:
D = 0.661/0.433 = 1.527Segment is On

Segment is Off

-VDD

-VDD

-VDD

-VDD

VDD

1/2 VDD

0

COM0

VDD

1/2 VDD

0

COM1

VDD

1/2 VDD

0

SEG0

VDD

1/2 VDD

0

SEG1

t0 t1 t2 t3

One ‘Frame’ of Type B Waveform
(addresses all segments twice)

One Frame

COM / SEG is selected

COM / SEG is not selected

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B 269

LCD Direct Drive

Figure 23-4. PWM1/3 Type-A Waveform Example

VDD

0COM0 -SEG0

VDD

0

VDD

0

VDD

0

t0 t1 t2 t3

Resulting voltage across segments

COM0 -SEG1

COM1 -SEG0

COM1 -SEG1

Segment On:
VRMS = 0.577 VDD

(VDC = 0)

Segment On:
VRMS = 0.577 VDD

Segment Off:
VRMS = 0.333 VDD

Segment Off:
VRMS = 0.333 VDD

Discrimination ratio:
D = 0.577/0.333 = 1.732Segment is On

Segment is Off

-VDD

-VDD

-VDD

-VDD

VDD

2/3 VDD

1/3 VDD

0

COM0

VDD

2/3 VDD

1/3 VDD

0

COM1

VDD

2/3 VDD

1/3 VDD

0

SEG0

VDD

2/3 VDD

1/3 VDD

0

SEG1

t0 t1 t2 t3

One ‘Frame’ of Type A Waveform
(addresses all segments once)

One Frame

COM / SEG is selected

COM / SEG is not selected

270 PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

LCD Direct Drive

Figure 23-5. PWM1/3 Type-B Waveform Example

VDD

0COM0 -SEG0

VDD

0

VDD

0

VDD

0

t0 t1 t2 t3

Resulting voltage across segments

COM0 -SEG1

COM1 -SEG0

COM1 -SEG1

Segment On:
VRMS = 0.577 VDD

(VDC = 0)

Segment On:
VRMS = 0.577 VDD

Segment Off:
VRMS = 0.333 VDD

Segment Off:
VRMS = 0.333 VDD

Discrimination ratio:
D = 0.577/0.333 = 1.732Segment is On

Segment is Off

-VDD

-VDD

-VDD

-VDD

VDD

2/3 VDD

1/3 VDD

0

COM0

VDD

2/3 VDD

1/3 VDD

0

COM1

VDD

2/3 VDD

1/3 VDD

0

SEG0

VDD

2/3 VDD

1/3 VDD

0

SEG1

t0 t1 t2 t3

One ‘Frame’ of Type B Waveform
(addresses all segments twice)

One Frame

COM / SEG is selected

COM / SEG is not selected

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B 271

LCD Direct Drive

The effective RMS voltage for ON and OFF segments can
be calculated easily using these equations:

Equation 23-1

 Equation 23-2

Where B is the bias and M is the duty (number of COMs).

For example, if the number of COMs is four, the resulting
discrimination ratios (D) for 1/2 and 1/3 biases are 1.528
and 1.732, respectively. 1/3 bias offers better discrimination
ratio in two and three COM drives also. Therefore, 1/3 bias
offers better contrast than 1/2 bias and is recommended for
most applications. 1/4 and 1/5 biases are available only in
high-speed operation of the LCD. They offer better discrimi-
nation ratio especially when used with high COM designs
(more than four COMs).

When the low-speed operation of LCD is used, the PWM
signal is derived from the 32-kHz ILO. To drive a low-capac-
itance display with acceptable ripple and rise/fall times using
a 32-kHz PWM, additional external series resistances of
100 k-1 M should be used. External resistors are not
required for PWM frequencies greater than ~1 MHz. The
ideal PWM frequency depends on the capacitance of the
display and the internal ITO resistance of the ITO routing
traces.

The 1/2 bias mode has the advantage that PWM is only
required on the COM signals; the SEG signals use only logic
levels, as shown in Figure 23-2 and Figure 23-3.

23.2.1.2 Digital Correlation

The digital correlation mode, instead of generating bias volt-
ages between the rails, takes advantage of the characteris-
tic of LCDs that the contrast of LCD segments is determined
by the RMS voltage across the segments. In this approach,
the correlation coefficient between any given pair of COM
and SEG signals determines whether the corresponding
LCD segment is on or off. Thus, by doubling the base drive
frequency of the COM signals in their inactive sub-frame
intervals, the phase relationship of the COM and SEG drive
signals can be varied to turn segments on and off. This is
different from varying the DC levels of the signals as in the
PWM drive approach. Figure 23-8 and Figure 23-9 are
example waveforms that illustrate the principles of opera-
tion.

V
RMS OFF  2 B 2– 2

2 M 1– +
2M

--= x
VDRV

B
-------------- 
 

V
RMS ON  2B2 2 M 1– +

2M
--------------------------------------= x

VDRV

B
-------------- 
 

272 PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

LCD Direct Drive

Figure 23-6. Digital Correlation Type-A Waveform

VDD

0COM0 -SEG0

VDD

0

VDD

0

VDD

0

t0 t1 t2 t3

Resulting voltage across segments

COM0 -SEG1

COM1 -SEG0

COM1 -SEG1

Segment On:
VRMS = 0.791 VDD

(VDC = 0)

Segment On:
VRMS = 0.791 VDD

Segment Off:
VRMS = 0.612 VDD

Segment Off:
VRMS = 0.612 VDD

Discrimination ratio:
D = 0.791/0.612 = 1.291Segment is On

Segment is Off

-VDD

-VDD

-VDD

-VDD

VDD

0

COM0

VDD

0

COM1

VDD

0

SEG0

VDD

0

SEG1

t0 t1 t2 t3

One ‘Frame’ of Type A Waveform
(addresses all segments once)

One Frame

COM / SEG is selected

COM / SEG is not selected

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B 273

LCD Direct Drive

Figure 23-7. Digital Correlation Type-B Waveform

VDD

0COM0 -SEG0

VDD

0

VDD

0

VDD

0

t0 t1 t2 t3

Resulting voltage across segments

COM0 -SEG1

COM1 -SEG0

COM1 -SEG1

Segment On:
VRMS = 0.791 VDD

(VDC = 0)

Segment On:
VRMS = 0.791 VDD

Segment Off:
VRMS = 0.612 VDD

Segment Off:
VRMS = 0.612 VDD

Discrimination ratio:
D = 0.791/0.612 = 1.291Segment is On

Segment is Off

-VDD

-VDD

-VDD

-VDD

VDD

0

COM0

VDD

0

COM1

VDD

0

SEG0

VDD

0

SEG1

t0 t1 t2 t3

One ‘Frame’ of Type B Waveform
(addresses all segments twice)

One Frame

COM / SEG is selected

COM / SEG is not selected

274 PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

LCD Direct Drive

The RMS voltage applied to on and off segments can be cal-
culated as follows:

Where B is the bias and M is the duty (number of COMs).
This leads to a discrimination ratio (D) of 1.291 for four
COMs.

Digital correlation mode also has the ability to drive 3-V dis-
plays from 1.8 V VDD.

23.2.2 Recommended Usage of Drive
Modes

The PWM drive mode has higher discrimination ratios com-
pared to the digital correlation mode, as explained in
23.2.1.1 PWM Drive and 23.2.1.2 Digital Correlation. There-
fore, the contrast in digital correlation method is lower than
PWM method but digital correlation has lower power con-
sumption because its waveforms toggle at low frequencies.

The digital correlation mode creates reduced, but accept-
able contrast on TN displays, but no noticeable difference in
contrast or viewing angle on higher contrast STN displays.

Because each mode has strengths and weaknesses, rec-
ommended usage is as follows.

23.2.3 Digital Contrast Control

In all drive modes, digital contrast control can be used to change the contrast level of the segments. This method reduces
contrast by reducing the driving time of the segments. This is done by inserting a ‘Dead-Time’ interval after each frame. Dur-
ing dead time, all COM and SEG signals are driven to a logic 1 state. The dead time can be controlled in fine resolution.
Figure 23-8 illustrates the dead-time contrast control method for 1/3 bias and 1/4 duty implementation.

Figure 23-8. Dead-Time’ Contrast Control

V
RMS OFF  M 1– 

2M
-------------------= x VDD 

V
RMS ON  2 M 1– +

2M
----------------------------= x VDD 

Table 23-1. Recommended Usage of Drive Modes

Display Type Deep-Sleep Mode Sleep/Active Mode Notes

Four COM TN
Glass

Digital correlation PWM 1/3 bias
Firmware must switch between LCD drive modes before going to deep
sleep or waking up.

Four COM STN
Glass

Digital correlation No contrast advantage for PWM drive with STN glass.

Eight and Sixteen
COM, STN

Not supported
PWM 1/4 bias and
1/5 bias

Supported only in the high-speed LCD mode. The low-speed clock is not
fast enough to make the PWM work at high multiplex ratios.

VDD

2/3 VDD

1/3 VDD

0

COM0

VDD

2/3 VDD

1/3 VDD

0

COM1

VDD

2/3 VDD

1/3 VDD

0

SEG0

VDD

2/3 VDD

1/3 VDD

0

SEG1

t0 t1 t2 t3

Two Frames of of Type A Waveform with Dead-time

(Example for 1/4th Duty and 1/3rd bias)

Dead-Time

t0 t1 t2dt dtt3

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B 275

LCD Direct Drive

23.3 Block Diagram
Figure 23-9. Block Diagram of LCD Direct Drive System

23.3.1 How it Works

The LCD controller block contains two generators; one with
a high-speed clock source HFCLK and the other with a low-
speed clock source (32 kHz) derived from the ILO. These
are called high-speed LCD master generator and low-speed
LCD master generator, respectively. Both the generators
support PWM and digital correlation drive modes. PWM
drive mode with low-speed generator requires external
resistors, as explained in PWM Drive on page 266.

The multiplexer selects one of these two generator outputs
to drive LCD, as configured by the firmware. The LCD pin
logic block routes the COM and SEG outputs from the gen-
erators to the corresponding I/O matrices. Any GPIO can be
used as either COM or SEG. This configurable pin assign-
ment for COM or SEG is implemented in GPIO and I/O
matrix; see High-Speed I/O Matrix on page 68. These two
generators share the same configuration registers. These
memory mapped I/O registers are connected to the system
bus (AHB) using an AHB interface.

The LCD controller works in three device power modes:
active, sleep, and deep-sleep. High-speed operation is sup-
ported in active and sleep modes. Low-speed operation is
supported in active, sleep, and deep-sleep modes. The LCD
controller is unpowered in hibernate and stop modes.

23.3.2 High-Speed and Low-Speed
Master Generators

The high-speed and low-speed master generators are simi-
lar to each other. The only exception is that the high-speed
version has larger frequency dividers to generate the frame
and sub-frame periods. This is because the clock of the
high-speed block (HFCLK) is derived from the IMO, which is
typically at 30 to 100 times the frequency of the ILO (32 kHz)
clock fed to the low-speed block. The high-speed generator
is in the active power domain and the low-speed generator
is in the deep-sleep power domain. A single set of configura-
tion registers is provided to control both high-speed and low-
speed blocks. Each master generator has the following fea-
tures and characteristics:

■ Register bit configuring the block for either Type A or
Type B drive waveforms (LCD_MODE bit in
LCD_CONTROL register).

■ Register bits to select the number of COMs (COM_NUM
field in LCD_CONTROL register). The available values
are 2, 3, and 4.

■ Operating mode configuration bits enabled to select one
of the following:

❐ Digital correlation

❐ PWM 1/2 bias

❐ PWM 1/3 bias

High Speed (HS)
LCD Master
Generator

AHB
interface

AHB

Low
Frequency

Clock (32Khz)

Config&Control
Registers

LCD Mode
Select
(HS/LS)

Sub Frame
Data

Display
Data

HSIO
Matrix

LCD com[0]

Display Data [0]

LCD
Pin

Logic

Display
Data

Registers

HSIO
Matrix

HSIO
Matrix

High Frequency
Clock

LCD seg[0]

LCD com[1]

LCD seg[1]

LCD com[n]

LCD seg[n]

Active
Power Domain

DeepSleep
Power Domain

Low Speed (LS)
LCD Master
Generator

Multiplexer

Display Data [1]

Display Data [n]

HS COM Signals

HS SEG Signals

LS COM Signals

LS SEG Signals

HS Sub Frame Data

LS Sub Frame Data

COM
Signals

SEG
Signals

276 PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

LCD Direct Drive

❐ PWM 1/4 bias (not supported in low-speed genera-
tor)

❐ PWM 1/5 bias (not supported in low-speed genera-
tor)

❐ Off/disabled. Typically, one of the two generators will
be configured to be Off

OP_MODE and BIAS fields in LCD_CONTROL bits
select the drive mode.

■ A counter to generate the sub-frame timing. The
SUBFR_DIV field in the LCD_DIVIDER register deter-
mines the duration of each sub-frame. If the divide value
written into this counter is C, the sub-frame period is 4 ×
(C+1). The low-speed generator has an 8-bit counter.
This generates a maximum half sub-frame period of
8 ms from the 32-kHz ILO clock. The high-speed gener-
ator has a 16-bit counter.

■ A counter to generate the dead time period. These coun-
ters have the same number of bits as the sub-frame
period counters and use the same clocks. DEAD_DIV
field in the LCD_DIVIDER register controls the dead time
period.

23.3.3 Multiplexer and LCD Pin Logic

The multiplexer selects the output signals of either high-
speed or low-speed master generator blocks and feeds it to
the LCD pin logic. This selection is controlled by the configu-
ration and control register. The LCD pin logic uses the sub-
frame signal from the multiplexer to choose the display data.
This pin logic will be replicated for each LCD pin.

23.3.4 Display Data Registers

Each LCD segment pin is part of an LCD port with its own
display data register, LCD_DATAnx. The device has eight
such LCD ports. Note that these ports are not real pin ports
but the ports/connections available in the LCD hardware for
mapping the segments to commons. Each LCD segment
configured is considered as a pin in these LCD ports. The
LCD_DATAnx registers are 32-bit wide and store the ON/
OFF data for all SEG-COM combination enabled in the
design. LCD_DATA0x holds SEG-COM data for COM0 to
COM3 and LCD_DATA1x holds SEG-COM data for COM4
to COM7. The bits [4i+3:4i] (where 'i' is the pin number) of
each LCD_DATA0x register represent the ON/OFF data for
Pin[i] in Port[x] and COM[3,2,1,0] combinations, as shown in
Table 23-2. The LCD_DATAnx register should be pro-
grammed according to the display data of each frame. The
display data registers are Memory Mapped I/O (MMIO) and
accessed through the AHB slave interface.

23.4 Register List

Table 23-2. SEG-COM Mapping in LCD_DATA0x Registers (each SEG is a pin of the LCD port)

BITS[31:28] = PIN_7[3:0] BITS[27:24] = PIN_6[3:0]

PIN_7-COM3 PIN_7-COM2 PIN_7-COM1 PIN_7-COM0 PIN_6-COM3 PIN_6-COM2 PIN_6-COM1 PIN_6-COM0

BITS[23:20] = PIN_5[3:0] BITS[19:16] = PIN_4[3:0]

PIN_5-COM3 PIN_5-COM2 PIN_5-COM1 PIN_5-COM0 PIN_4-COM3 PIN_4-COM2 PIN_4-COM1 PIN_4-COM0

BITS[15:12] = PIN_3[3:0] BITS[11:8] = PIN_2[3:0]

PIN_3-COM3 PIN_3-COM2 PIN_3-COM1 PIN_3-COM0 PIN_2-COM3 PIN_2-COM2 PIN_2-COM1 PIN_2-COM0

BITS[7:3] = PIN_1[3:0] BITS[3:0] = PIN_0[3:0]

PIN_1-COM3 PIN_1-COM2 PIN_1-COM1 PIN_1-COM0 PIN_0-COM3 PIN_0-COM2 PIN_0-COM1 PIN_0-COM0

Table 23-3. LCD Direct Drive Register List

Register Name Description

LCD_ID This register includes the information of LCD controller' ID and revision number

LCD_DIVIDER This register controls the sub-frame and dead-time period

LCD_CONTROL This register is used to configure high-speed and low-speed generators

LCD_DATA0x LCD port pin data register for COM0 to COM3; x = port number, eight ports are available

LCD_DATA1x LCD port pin data register for COM4 to COM7; x = port number, eight ports are available

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B 277

24. CapSense

PSoC® 4 uses a capacitive touch sensing method known as CapSense® Sigma Delta (CSD). The CapSense Sigma Delta
touch sensing method provides the industry's best-in-class signal-to-noise ratio (SNR). CSD is a combination of hardware
and firmware techniques. This chapter explains how the CSD hardware is implemented in PSoC 4.

See the PSoC 4 CapSense Design Guide for more details on the basics of CSD operation, available CapSense design tools,
the easy-to-use PSoC Creator™ component, performance tuning using the tuner GUI, and PCB layout design considerations.

24.1 Features

PSoC 4 CapSense has the following features:

■ Robust sensing technology

■ CSD operation provides best-in-class SNR

■ High-performance sensing across a variety of overlay materials and thicknesses

■ SmartSense™ auto-tuning technology

■ Supports as many as 55 sensors

■ High-range proximity sensing

■ Water tolerant operation using shield signal, available on all GPIOs

■ Low power consumption

■ Two IDAC operation for improved scan speed and SNR

■ Any GPIO pin can be used for sensing or shielding

■ Pseudo random sequence (PRS) clock source for lower electromagnetic interference (EMI)

■ Dedicated charge tank capacitor for quick charge transfer on to shield lines

■ GPIO cell precharge support to quickly initialize external tank capacitors

■ Two independent CSD blocks, which allow combining capacitive sensing with providing IDACs for analog circuits (such as
energizing bridges and sensors)

24.2 Block Diagram

Figure 24-1 shows the CSD system block diagram.

http://www.cypress.com/go/an85951

278 PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

CapSense

Figure 24-1. CapSense Module Block Diagram

24.3 How It Works

With CSD, each GPIO has a switched capacitance circuit
that converts the sensor capacitance into an equivalent cur-
rent. An analog multiplexer then selects one of the currents
and feeds it into the current-to-digital converter. The current-
to-digital converter is similar to a sigma delta ADC.

The output count of the current-to-digital converter, known
as raw count, is a digital value that is proportional to the sen-
sor capacitance.

Figure 24-2 shows a plot of raw count over time. When a fin-
ger touches the sensor, the sensor capacitance increases;
the raw count increases proportionally. By comparing the
change in raw count to a predetermined threshold, logic in
firmware can decide whether the sensor is active (finger is
present).

Figure 24-2. Raw Count Versus Time

Capacitance to
current converter

GPIO Pin

GPIO Pin

GPIO Pin

CS1

CS2

CSN

Sensor 1

Sensor 2

Sensor N

Capacitance to
current converter

Capacitance to
current converter

Analog
Multiplexer

Current to digital
converter (sigma

delta)

Firmware
processing

IS1

IS2

ISN

raw count touch status

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B 279

CapSense

24.4 CapSense CSD Sensing

Figure 24-3 shows the block diagram of the PSoC 4 CapSense hardware.

Figure 24-3. PSoC 4 CapSense CSD Sensing

24.4.1 GPIO Cell Capacitance to Current
Converter

In the CapSense CSD system, the GPIO cells are config-
ured as switched capacitance circuits, which convert the
sensor capacitance to equivalent currents. Figure 24-4
shows a simplified diagram of the PSoC 4 GPIO cell struc-
ture.

PSoC 4 has two analog multiplexer buses: AMUXBUS A is
used for CSD sensing and AMUXBUS B is used for CSD
shielding. The GPIO switched capacitance circuit has two
possible configurations: source current to AMUXBUS A or
sink current from AMUXBUS A. Figure 24-5 shows the
switched capacitance configuration for sourcing current to
AMUXBUS A.

Figure 24-4. PSoC 4 GPIO Cell

GPIO
cell

GPIO
cell

GPIO
cell

8 bit IDAC

7 bit IDACGPIO pin

GPIO pin

GPIO pin

CMOD pin

VREF

(1.2V)

CS1

CS2

CSN

Integrating capacitor for
sigma-delta converter
CMOD

IO cells configured as switched
capacitance circuits for capacitance
to current conversion

raw
counts

 current to digital converter

AMUXBUS A forms an analog
multiplexer for the sensors

sensor 1

sensor 2

sensor N

IDAC
control

modulation clock

switching clock for
GPIO switched capacitance

circuits, frequency FSW

frequency FMOD

sigma-delta
converter

counter

sense
comparator

CapSense
clock generator

switching clock

modulation clock

(Both from
system

resources)

GPIO
Pin

VDDD

AMUXBUS
 A

AMUXBUS
B

SW1

SW2

SW3

SW4

280 PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

CapSense

Figure 24-5. Sourcing Current to AMUXBUS A

Two non-overlapping, out of phase clocks of frequency FSW

(see Figure 24-3) control the switches SW2 and SW3. The

continuous switching of SW2 and SW3 forms an equivalent

resistance RS, as Figure 24-5 shows. The value of the

equivalent resistance RS is:

Equation 24-1

Where:

CS = Sensor capacitance

FSW = Frequency of the switching clock

The sigma delta converter maintains the voltage of AMUX-
BUS A at a constant VREF (this process is explained in

Sigma Delta Converter on page 281). Figure 24-6 shows the
voltage waveform across the sensor capacitance.

Figure 24-6. Voltage Across Sensor Capacitance

Equation 23-3 gives the value of average current supplied to
AMUXBUS A.

Equation 24-2

Figure 24-7 shows the switched capacitance configuration
for sinking current from AMUXBUS A. Figure 24-8 shows
the resulting voltage waveform across CS.

Figure 24-7. Sinking Current From AMUXBUS A

CS

RS

AMUXBUS A
VDDD VDDD

SW2

SW3

AMUXBUS A

ISW
ISW

ISW

RS
1

CSF
SW

------------------=

V

t

VREF

(1.2 V)

0

TSW = 1/FSW

VDDD

SW2 Closed
SW3 Open

SW2 Open
SW3 Closed

IS CSFSW VDDD V– REF =

CS

RS

AMUXBUS A

SW1

SW3

AMUXBUS A

ISW

ISW

ISW

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B 281

CapSense

Figure 24-8. Voltage Across Sensor Capacitance

Equation 23-4 gives the value of average current taken from
AMUXBUS A.

Equation 24-3

The sigma delta converter scans one sensor at a time.
AMUXBUS A is used to select one of the GPIO cells and
connects it to the input of the sigma delta converter, as
Figure 24-3 shows. The AMUXBUS A and the GPIO cell
switches (see SW3 in Figure 24-4) form this analog multi-

plexer. AMUXBUS A can connect to all PSoC 4 pins that
support CSD. See the device datasheet to know the CSD
capable pins.

See the I/O System chapter on page 63 to know how to con-
figure a GPIO cell for sensing, shielding, and connecting
CMOD.

24.4.2 CapSense Clock Generator

This block, together with the programmable clock dividers
from the system resources, generates the switching clock
FSW and the modulation clock FMOD, as Figure 24-3 shows.

For details, see the Clocking System chapter on page 73.

The switching clock is required for the GPIO cell switched
capacitance circuits. The sigma delta converter uses the
modulation clock for timing.

Any two programmable clock dividers from the system
resources can be used to divide the HFCLCK and generate
the required frequencies. See the Clocking System chapter
on page 73 for details. Typically, two cascaded clock divid-
ers are used. The first clock divider generates modulation
clock and the second one generates switching clock.

However, the final switching clock frequency depends on the
CapSense clock generator. It has the following output
options:

■ Direct: Uses the output of programmable clock dividers
directly. To select this option, set the BYPASS_SEL bit in
the CSD_CONFIG register ‘1’.

■ Divide by 2. Divides the clocks by two. To select this
option, clear the PRS_SELECT and BYPASS_SEL bits
in the CSD_CONFIG register.

■ Pseudo random sequence (PRS): Reduces the EMI in
the CapSense system by spreading the switching fre-
quency over a broader range. To select this option, set
the PRS_SELECT bit and clear the BYPASS_SEL bit in
the CSD_CONFIG register. You can select between 8-
and 12- bit pseudo random sequence using the
PRS_12_8 bit in the same register. Set this bit to select a
12- bit sequence; clear it for 8- bit PRS.

If PRS is selected, the maximum switching frequency is

 Equation 24-4

Where Fin is the frequency output of the switching divider.

The minimum frequency is:

Equation 24-5

Where PRS length is either 12 or 8 bits. The average switch-
ing frequency is:

Equation 24-6

The PRS_CLEAR bit in CSD_CONFIG can be used to clear
the PRS; when set, this bit forces the pseudo-random gen-
erator to its initial state.

24.4.3 Sigma Delta Converter

The sigma delta converter converts the input current to a
corresponding digital count. It consists of a comparator, a
voltage reference VREF, a counter, and two current sourcing/

sinking digital-to-analog converters (IDACs), as Figure 24-3
shows.

The sigma delta modulator controls the current of the 8-bit
IDAC in an on/off manner. This IDAC is known as the modu-
lation IDAC. The 7-bit IDAC, known as the compensation
IDAC, is either always on or always off.

The sigma delta converter can operate in either single IDAC
mode or dual IDAC mode. In the single IDAC mode, the
compensation IDAC is always off. In the dual IDAC mode,
the compensation IDAC is always on.

The sigma delta converter also requires an external integrat-
ing capacitor CMOD, as Figure 24-1 shows. The recom-

mended value of CMOD is 2.2 nF. PSoC 4 has a dedicated

CMOD pin. See the pinout in the device datasheet for details.

The sigma delta modulator maintains the voltage across
CMOD at VREF. It works in one of the following modes:

■ IDAC sourcing mode: If the switched capacitor circuit
sinks current from AMUXBUS A, the IDACs source cur-
rent to AMUXBUS A to balance its voltage.

V

t

VREF

(1.2 V)

0

TSW = 1/FSW

SW1 Open
SW3 Closed

SW1 Closed
SW3 Open

IS CSFSWVREF=

FSW maximum 
Fin

2
-------=

FSW minimum 
Fin

PRS length-1
--------------------------------=

FSW average 
Fin

4
-------=

http://www.cypress.com/?rID=108039
http://www.cypress.com/?rID=108039

282 PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

CapSense

■ IDAC sinking mode: In this mode, the IDACs sink current
from CMOD and the switched capacitor circuit sources

current to CMOD.

In both cases, the modulation IDAC current is switched on
and off corresponding to the small voltage variations across
CMOD to maintain the CMOD voltage at VREF.

The sigma delta converter can operate from 8-bit to 16-bit
resolutions. In the single IDAC mode, the raw count is pro-
portional to the sensor capacitance. If 'N' is the resolution of
the sigma delta converter and IMOD is the value of the modu-

lation IDAC current, the approximate value of raw count in
IDAC sourcing mode is given by Equation 16-7.

Equation 24-7

Similarly, the approximate value of raw count in IDAC sink-
ing mode is:

Equation 24-8

In both cases, the raw count is proportional to sensor capac-
itance CS. This raw count can be processed by the firmware

to detect touches. You can use both the IDACs in a dual
IDAC mode to improve the CapSense performance.

In this dual IDAC mode, the compensation IDAC is always
on. If ICOMP is the compensation IDAC current, the equation

for the raw count in IDAC sourcing mode is:

Equation 24-9

Raw count in IDAC sinking mode is given by equation 16-10.

Equation 24-10

Note that raw count values are always positive.

The hardware parameters such as ICOMP, IMOD, and FSW,

should be tuned to optimum values for reliable touch detec-
tion. For a detailed discussion of the tuning process, see the
PSoC 4 CapSense Design Guide.

Registers CSD_CONFIG, CSD_COUNTER, and CSD_IDAC
control the operation of the sigma delta converter. The
important bits in the CSD_CONFIG register are:

■ ENABLE in CSD_CONFIG: Master enable of the CSD
block. Must be set to '1' for any CSD operation to func-
tion.

■ POLARITY in CSD_CONFIG: Selects between IDAC
sinking mode and IDAC sourcing mode. 0: IDAC sourc-
ing mode, 1: IDAC sinking mode.

■ SENSE_COMP_BW in CSD_CONFIG: Selects the
bandwidth of the sensing comparator. Setting this bit
gives high bandwidth and clearing it gives low band-
width. High bandwidth is recommended for CSD opera-
tion.

■ SENSE_COMP_EN in CSD_CONFIG: Turns on the
sense comparator circuit. 0: Sense comparator is pow-
ered off. 1: Sense comparator is powered on.

■ SENSE_EN: Enables the sigma delta modulator output.
Also turns on the IDACs.

The IDACs must be configured properly for CSD operation.
See the CSD_IDAC register in the PSoC 4100M/4200M
Family: PSoC 4 Registers TRM for details.

CSD_COUNTER register is used to initiate a sampling of
the currently selected sensor and to read the result. The 16-
bit COUNTER field in this register increments whenever the
comparator is sampled (at the modulation clock frequency)
and the sample is 1. Firmware typically writes ‘0’ to this field
whenever a new sense operation is initiated. The 16-bit
PERIOD field in the CSD_COUNTER register is used to ini-
tiate the capacitance to digital conversion. Writing a non-
zero value to this register initiates a sensing operation. The
value written to this field by the firmware determines the
period during which the COUNTER field samples the com-
parator output.

The clocks, GPIOs, IDACs, and the sigma delta modulator
must be properly configured before starting the CSD opera-
tion. The period field decrements after every modulation
clock cycle. When it reaches 0, the COUNTER field stops
incrementing. The value of this field at this time is the raw
count corresponding to the value of sensor capacitance.

24.5 CapSense CSD Shielding

PSoC 4 CapSense supports shield electrodes for water-
proofing and proximity sensing. For waterproofing, the
shield electrode is always kept at the same potential as the
sensors. PSoC 4 CapSense has a shielding circuit that
drives the shield electrode with a replica of the sensor
switching signal (see GPIO Cell Capacitance to Current
Converter on page 279) to nullify the potential difference
between sensors and the shield electrode. See the PSoC 4
CapSense Design Guide to understand the basics of shield-
ing.

In the sensing circuit, the sigma delta converter keeps the
AMUXBUS A at VREF (see Sigma Delta Converter on
page 281). The GPIO cells generate the sensor waveforms
by switching the sensor between AMUXBUS A and a supply
rail (either VDD or ground, depending on the configuration).
The shielding circuit works in a similar way; AMUXBUS B is
always kept at VREF. The GPIO cell switches the shield

Rawcount 2
NVREFFSW

IMOD
-------------------------CS=

Rawcount 2
N VDD VREF– FSW

IMOD
---CS=

Rawcount 2
NVREFFSW

IMOD
-------------------------CS 2

NICOMP

IMOD
----------------–=

Rawcount 2
N VDD VREF– FSW

IMOD
---CS 2

NICOMP

IMOD
----------------–=

http://www.cypress.com/go/an85951
http://www.cypress.com/go/an85951
http://www.cypress.com/go/an85951
http://www.cypress.com/?rid=111232
http://www.cypress.com/?rid=111232

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B 283

CapSense

between AMUXBUS B and a supply rail (either VDDD or
ground, the same configuration as the sensor). This process
generates a replica of the sensor switching waveform on the
shield electrode.

Depending on how AMUXBUS B is maintained at VREF, two

different configurations are possible.

■ Shield driving using VREF buffer: In this configuration, a

voltage buffer is used to drive AMUXBUS B to VREF, as

Figure 24-9 shows. An external CSH_TANK capacitor is

recommended to reduce switching transients. Setting
the REBUF_OUTSEL bit in the CSD_CONFIG register
connects the buffer output to AMUXBUS B. The
REFBUF_DRV bit field in the same register can be used
to set the drive strength of the buffer. Writing a '0' to this
field disables the buffer; writing 1, 2, and 3 selects the
low, mid, and high-current drive modes respectively.

Figure 24-9. Shield Driving Using VREF Buffer

■ Shield driving using GPIO cell precharge: This configuration requires an external CSH_TANK capacitor, as Figure 24-10

shows. A special GPIO cell and a reference comparator is used to charge the CSH_TANK capacitor and hence the AMUX-

BUS B to VREF. The reference comparator always monitors the voltage on the CSH_TANK capacitor and controls the

GPIO cell switch to keep the voltage at VREF. The reference comparator connects to the CSH_TANK capacitor using a ded-

icated sense line known as Channel 2 sensing line, as Figure 24-10 shows.

Figure 24-10. Shield Driving Using GPIO Precharge

This GPIO cell precharge capability is available only on a
fixed CSH_TANK pin. See the device pinout in the device

datasheet for details.

COMP_MODE bit in the CSD_CONFIG register selects
between the reference buffer precharge and GPIO pre-
charge; 0: reference buffer precharge, 1: GPIO precharge.

24.5.1 CMOD Precharge

When the CapSense hardware is enabled for the first time,
the voltage across CMOD starts at zero. Then the sigma

delta converter slowly charges the CMOD to VREF. The

charging current is supplied by the IDACs in the IDAC
sourcing mode and by the sensor switched capacitance cir-

GPIO
Cell

GPIO Pin

GPIO Pin

VREF

Shield Tank
 Capacitor
(optional)

Shield Electrode

(1.2V)

AMUXBUS B
(Always kept at VREF)

VREF Buffer

CSH_TANK

CSHIELD

Shield
electrode

capacitance

GPIO
Cell

GPIO Pin

CSH_TANK Pin

Shield Tank
 Capacitor

Shield Electrode

CSH_TANK

CSHIELD

Shield
electrode

capacitance

AMUXBUS B
(Always kept at VREF)

GPIO cell switch

VDD

VREF (1.2V)

Reference
Comparator

Channel 2 sensing line

http://www.cypress.com/?rID=108039
http://www.cypress.com/?rID=108039

284 PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

CapSense

cuit in the IDAC sinking mode. However, this is a slow pro-
cess because CMOD is a relatively large capacitor.

Precharging of CMOD is the process of quickly initializing the

voltage across CMOD to VREF. Precharging reduces the time

required for the sigma delta converter to start its operation.
There are two options for precharging CMOD.

■ Precharge using VREF buffer: When the shield is

enabled, the VREF buffer output is always connected to

AMUXBUS B (Figure 24-9). To precharge using the
VREF buffer, CMOD is initially connected to AMUXBUS B.

After the precharging process, CMOD is connected to

AMUXBUS A for normal sigma delta operation. When
the shield is disabled, the VREF buffer output is always

connected to AMUXBUS A for precharging and discon-
nected afterwards.

■ Precharge using GPIO cell: In this configuration, a spe-
cial GPIO cell and a reference comparator is used to
charge the CMOD capacitor to VREF. This GPIO cell pre-

charge capability is available only on a fixed CMOD pin.

See the pinout in the device datasheet for details. The
comparator used for this purpose is the same reference
comparator used for CSH_TANK precharge. COMP_PIN
bit in the CSD_CONFIG register is used to select which
capacitor is connected to the reference comparator. If
this bit is 0, the sense line designated as "Channel 1" is
used to connect CMOD to the reference comparator as

Figure 24-11 shows; if this bit is 1, Channel 2 sense line
is used to connect CSH_TANK to the reference compar-
ator, as Figure 24-10 shows. Note that the GPIO cells
must be configured properly for the GPIO cell precharge
to work.

Figure 24-11. GPIO Cell Precharge

Precharge using a GPIO cell is faster than using the
VREF buffer. Therefore, GPIO precharge is the recom-

mended precharge configuration. However, if you do not
need a fast initialization of CapSense, use the VREF buf-

fer precharge.

The Channel 1 sense line can also be used to connect
CMOD to the sensing comparator in the sigma delta mod-

ulator. Setting the SENSE_INSEL bit in the
CSD_CONFIG register to '1' enables this option. Clear-
ing this bit connects CMOD to the sensing comparator

using AMUXBUS A.

24.6 General-Purpose
Resources: IDACs and
Comparator

If the CapSense block is not used for touch sensing, the
sense comparator and the two IDACs can be used as gen-
eral-purpose analog blocks.

You can use AMUXBUS A to connect any CSD-supported
GPIO to the non-inverting input of the sense comparator.
The inverting input is connected to the 1.2-V VREF (see

Figure 24-3). The AMUXBUS A can also be used as an ana-
log multiplexer at the comparator input. The
SENSE_COMP_EN, SENSE_COMP_BW, and ENABLE
bits in the CSD_CONFIG register can be used to control the
sense comparator, as explained in Sigma Delta Converter
on page 281.

If AMUXBUS is required for other uses, the SENSE_INSEL
bit in the CSD_CONFIG register can be used to connect the
non-inverting input of the sense comparator to the fixed
CMOD pin, as explained in CMOD Precharge on page 283.

The output of the comparator can connect to multiple
GPIOs, see the I/O System chapter on page 63 for more
details.

The 8-bit IDAC can operate in either 0 to 306 µA (1.2 µA/bit)
or 0 to 612 µA (2.4 µA/bit) ranges. The 7-bit IDAC supports
0 to 152.4 µA (1.2 µA/bit) and 0 to 304.8 µA (2.4 µA/bit)
ranges.

Both the 8-bit and 7-bit IDACs can connect to GPIOs using
AMUXBUS A and AMUXBUS B. It is also possible to con-
nect both IDACs to a single AMUXBUS. The IDACS can
operate in three different modes: CSD-only mode, General-
purpose (GP) mode, and CSD and GP mode. Table 24-1
describes how IDAC1 and IDAC2 are connected to AMUX-
BUS A and AMUXBUS B in each of these modes.

CMOD Pin

CMOD

AMUXBUS A
(Always kept at VREF)

GPIO cell switch

VREF (1.2V)

Reference
Comparator

Channel 1 sensing line

VDD

http://www.cypress.com/?rID=108039

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B 285

CapSense

See the CSD_IDAC register in the PSoC 4100M/4200M Family: PSoC 4 Registers TRM for details. The CSD_CONFIG regis-
ter can be used to enable the IDACs and set the polarity, as mentioned in Sigma Delta Converter on page 281. See the I/O
System chapter on page 63 for details on how to connect GPIOs to AMUXBUS A and B. The port 5 pins are hard-coded to
the CSD1 block and therefore, cannot be controlled by the CSD0 block. The CSD0 block can be connected to all pins except
port 5.

24.7 Register List

Table 24-1. IDAC Modes

Mode AMUXBUS A AMUXBUS B

CSD only Both IDACs sink/source current at 1.2 V No IDACs connected

General-purpose mode 8-bit IDAC sink/source current 7-bit IDAC sink/source current

CSD and GP mode 8-bit IDAC sink/source current at 1.2 V 7-bit IDAC sink/source current

Table 24-2. CapSense Register List

Register Name Description

CSD_CONFIG This register is used to configure and control the CSD block and its resources.

CSD_IDAC This register is used to control the IDAC current settings.

CSD_COUNTER This register is used to initiate a sampling of the selected capacitive sensor and read the result of conversion.

CSD_STATUS This register allows the observation of key signals in the CSD block.

CSD_INTR This is the CSD interrupt request register.

http://www.cypress.com/?rid=111232

286 PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

CapSense

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B 287

25. Temperature Sensor

PSoC® 4 has an on-chip temperature sensor that is used to measure the internal die temperature. The sensor consists of a
transistor connected in diode configuration.

25.1 Features

The temperature sensor has the following features:

■ ± 5° Celsius accuracy over temperature range –40 °C to +85 °C

■ 0.5° Celsius/LSB resolution (without amplification) when using a 12-bit SAR ADC with a 1.024-V reference

■ 10 µs settling time

25.2 How it Works

The temperature sensor consists of a single bipolar junction transistor (BJT) in the form of a diode. Its base-to-emitter voltage
(VBE) has a strong dependence on temperature at a constant collector current and zero collector-base voltage. This property

is used to calculate the die temperature by measuring the VBE of the transistor using SAR ADC, as shown in Figure 25-1.

Figure 25-1. Temperature Sensing Mechanism

The analog output from the sensor (VBE) is measured using the SAR ADC. Die temperature in °C can be calculated from the

ADC results as given in the following equation:

Equation 25-1

■ Temp is the slope compensated temperature in °C represented as Q16.16 fixed point number format.

■ ‘A’ is the 16-bit multiplier constant. The value of A is determined using the PSoC 4 family characterization data of two point
slope calculation. It is calculated as given in the following equation.

Temperature
Sensor

S
A

R
M

U
X

SAR ADC CPU

Ibias

2.5 uA
SAR_MUX_FW_
TEMP_VPLUS

Vssa

Current from Precision
Reference Block

vplus

vminus
12 bit

1.024 V

Vssa

vssa_kelvin

Temp A SARout 2
10

xB+  Tadjust+=

288 PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

Temperature Sensor

Equation 25-2

Where,

SAR100C = ADC counts at 100°C

SAR–40C = ADC counts at –40°C

Constant 'A' is stored in a register SFLASH_SAR_TEMP_MULTIPLIER.

■ ‘B’ is the 16-bit offset value. The value of B is determined on a per die basis by taking care of all the process variations and
the actual bias current (Ibias) present in the chip. It is calculated as given in the following equation.

Equation 25-3

Where,

SAR100C = ADC counts at 100°C

Constant 'B' is stored in a register SFLASH_SAR_TEMP_OFFSET.

■ Tadjust is the slope correction factor in °C. The temperature sensor is corrected for dual slopes using the slope correction
factor. It is evaluated based on the result obtained without slope correction, that is, evaluating Tinitial = (A×SARout+ 210×B).
If it is greater than the center value (15°C), then Tadjust is given by the following equation.

Equation 25-4

If less than center value, then Tadjust is given by the following equation.

Equation 25-5

Figure 25-2. Temperature Error Compensation

Note A and B are 16-bit constants stored in flash during factory calibration. Note that these constants are valid only when the
SAR ADC is running at 12-bit resolution with a 1.024-V reference.

25.3 Temperature Sensor Configuration

As shown in Figure 25-3, the temperature sensor output is routed to the positive input of SAR ADC via dedicated switches,
which can be controlled by sequencer, firmware, or digital system interconnect (DSI). The control signal for the switch
(SAR_MUX_FW_TEMP_VPLUS shown in Figure 25-1) enables the temperature sensor by passing bias current from preci-
sion reference block and connecting the sensor output to the positive input of SAR ADC. The SAR_MUX_FW_TEMP_VPLUS
control bit is a part of the SAR_MUX_SWITCH0 register. The switch status can be read using the
SAR_MUX_SWITCH_STATUS register.

A signedint  2
16 100C 40C– –

SAR100C SAR 40C––
-- 
 

 
 =

B unsignedint  2
6
x100C

A SAR100C

2
10

 
 
 

–
 
 
 

=

Tadjust
0.5C

100C 15C–
----------------------------------- 100C 2

16
Tinitial–  

 =

Tadjust
0.5C

40C 15C+
-------------------------------- 40C 2

16
Tinitial–  

 =

Temperature
Error

Actual Temperature
15°C 100°C-40°C

0°C

0.5°C

-0.5°C

Compensation curve

Sensor Error Curve

Tadjust

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B 289

Temperature Sensor

Figure 25-3. Routing Temperature Sensor Output to SAR ADC

25.4 Algorithm
1. Enable the SARMUX and SAR ADC.

2. Configure SAR ADC in single-ended mode with VNEG = VSS, VREF = 1.024 V, 12-bit resolution, and right-aligned result.

3. Enable the temperature sensor.

4. Get the digital output from the SAR ADC.

5. Fetch ‘A’ from SFLASH_SAR_TEMP_MULTIPLIER and ‘B’ from SFLASH_SAR_TEMP_OFFSET.

6. Calculate the die temperature using the linear equation (Equation 25-1).

For example, let A = 0xBC4B and B = 0x65B4. Assume that the output of SAR ADC (VBE) is 0x595 at a given tempera-

ture.

Firmware does the following calculations:

a. Multiply A and VBE: 0xBC4B × 0x595 = (–17333)10 × (1429)10 = (–24768857)10

b. Multiply B and 1024: 0x65B4 × 0x400 = (26036)10 × (1024)10 = (26660864)10

c. Add the result of steps 1 and 2 to get Tinitial: (–24768857)10 + (26660864)10 = (1892007)10 = 0x1CDEA7

d. Calculate Tadjust using Tinitial value: Tinitial is the upper 16 bits multiplied by 216, that is, 0x1C00 = (1835008)10. It is

greater than 15°C (0x1C - upper 16 bits). Use Equation 4 to calculate Tadjust. It comes to 0x6C6C = (27756)10

e. Add Tadjust to Tinitial: (1892007)10 + (27756)10 = (1919763)10 = 0x1D4B13

f. The integer part of temperature is the upper 16 bits = 0x001D = (29)10

g. The decimal part of temperature is the lower 16 bits = 0x4B13 = (0.19219)10

h. Combining the result of steps f and g, Temp = 29.19219 °C ~ 29.2°C

SARMUX

290 PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

Temperature Sensor

25.5 Registers

Name Description

SAR_MUX_SWITCH0
This register has the SAR_MUX_FW_TEMP_VPLUS field to connect the temperature sensor to the
SAR MUX terminal.

SAR_MUX_SWITCH_STATUS This register provides the status of the temperature sensor switch connection to SAR MUX.

SFLASH_SAR_TEMP_MULTIPLIER Multiplier constant 'A' as defined in Equation 25-1.

SFLASH_SAR_TEMP_OFFSET Constant 'B' as defined in Equation 25-1.

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B 291

Section F: Program and Debug

This section encompasses the following chapters:

■ Program and Debug Interface chapter on page 293

■ Nonvolatile Memory Programming chapter on page 299

Top Level Architecture

Program and Debug Block Diagram

S
ys

te
m

 B
us

PROGRAM AND DEBUG

Program

Debug and Trace

292 PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B 293

26. Program and Debug Interface

The PSoC® 4 Program and Debug interface provides a communication gateway for an external device to perform program-
ming or debugging. The external device can be a Cypress-supplied programmer and debugger, or a third-party device that
supports PSoC 4 programming and debugging. The serial wire debug (SWD) interface is used as the communication protocol
between the external device and PSoC 4.

26.1 Features

■ Programming and debugging through the SWD interface

■ Four hardware breakpoints and two hardware watchpoints while debugging

■ Read and write access to all memory and registers in the system while debugging, including the Cortex-M0 register bank
when the core is running or halted

26.2 Functional Description

Figure 26-1 shows the block diagram of the program and debug interface in PSoC 4. The Cortex-M0 debug and access port
(DAP) acts as the program and debug interface. The external programmer or debugger, also known as the "host", communi-
cates with the DAP of the PSoC 4 "target" using the two pins of the SWD interface - the bidirectional data pin (SWDIO) and
the host-driven clock pin (SWDCK). The SWD physical port pins (SWDIO and SWDCK) communicate with the DAP through
the high-speed I/O matrix (HSIOM). See the I/O System chapter on page 63 for details on HSIOM.

Figure 26-1. PSoC 4 Program and Debug Interface

The DAP communicates with the Cortex-M0 CPU using the ARM-specified advanced high-performance bus (AHB) interface.
AHB is the systems interconnect protocol used inside PSoC 4, which facilitates memory and peripheral register access by the
AHB master. PSoC 4 has two AHB masters – ARM CM0 CPU core and DAP. The external device can effectively take control
of the entire device through the DAP to perform programming and debugging operations.

H
S

IO
M

Cortex-M0 DAP

Debug Port (DP)

Access Port (AP)

AP Access

SWDCK

SWDIO

SWD

Cortex-M0 CPU

AHB DAP
AHB

ARM Cortex-M0 subsystem

AHB

S
P

C
 In

te
rf

a
ce

FLASH SROM SRAM
Peripheral
Modules

AHB

PSoC 4

Host Device

294 PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

Program and Debug Interface

26.3 Serial Wire Debug (SWD)
Interface

PSoC 4’s Cortex-M0 supports programming and debugging
through the SWD interface. The SWD protocol is a packet-
based serial transaction protocol. At the pin level, it uses a
single bidirectional data signal (SWDIO) and a unidirectional
clock signal (SWDCK). The host programmer always drives
the clock line, whereas either the host or the target drives
the data line. A complete data transfer (one SWD packet)
requires 46 clocks and consists of three phases:

■ Host Packet Request Phase – The host issues a
request to the PSoC 4 target.

■ Target Acknowledge Response Phase – The PSoC 4
target sends an acknowledgement to the host.

■ Data Transfer Phase – The host or target writes data to
the bus, depending on the direction of the transfer.

When control of the SWDIO line passes from the host to the
target, or vice versa, there is a turnaround period (Trn)
where neither device drives the line and it floats in a high-
impedance (Hi-Z) state. This period is either one-half or one
and a half clock cycles, depending on the transition.

Figure 26-2 shows the timing diagrams of read and write
SWD packets.

Figure 26-2. PSoC 4 SWD Write and Read Packet Timing Diagrams

The sequence to transmit SWD read and write packets are
as follows:

1. Host Packet Request Phase: SWDIO driven by the host

a. The start bit initiates a transfer; it is always logic 1.

b. The “AP not DP” (APnDP) bit determines whether
the transfer is an AP access – 1b1 or a DP access –
1b0.

c. The “Read not Write” bit (RnW) controls which direc-
tion the data transfer is in. 1b1 represents a ‘read
from’ the target, or 1b0 for a ‘write to’ the target.

d. The Address bits (A[3:2]) are register select bits for
AP or DP, depending on the APnDP bit value. See
Table 26-3 and Table 26-4 for definitions.
Note Address bits are transmitted with the LSB first.

e. The parity bit contains the parity of APnDP, RnW, and
ADDR bits. It is an even parity bit; this means, when
XORed with the other bits, the result will be 0.

If the parity bit is not correct, the header is ignored by
PSoC 4; there is no ACK response (ACK = 3b111).

The programming operation should be aborted and
retried again by following a device reset.

f. The stop bit is always logic 0.

g. The park bit is always logic 1.

2. Target Acknowledge Response Phase: SWDIO driven
by the target

a. The ACK[2:0] bits represent the target to host
response, indicating failure or success, among other
results. See Table 26-1 for definitions. Note ACK
bits are transmitted with the LSB first.

3. Data Transfer Phase: SWDIO driven by either target or
host depending on direction

a. The data for read or write is written to the bus, LSB
first.

b. The data parity bit indicates the parity of the data
read or written. It is an even parity; this means when
XORed with the data bits, the result will be 0.

If the parity bit indicates a data error, corrective
action should be taken. For a read packet, if the host

S
ta

rt
 (

1)

A
P

nD
P

R
nW

 (
0)

A[2:3]

P
ar

ity

S
to

p
(0

)

P
ar

k
(1

)

T
rn

 (
H

i-Z
)

1

w
da

ta
[0

]

P
ar

ity

ACK[0:2]

0 0

w
da

ta
[1

]

w
da

ta
[3

1]

...

...

...

T
rn

 (
H

i-Z
)

Host Packet Request Phase Target ACK Phase Host Data Transfer Phase

SWD Write Packet

S
ta

rt
 (

1)

A
P

nD
P

R
nW

 (
1)

A[2:3]

P
ar

ity

S
to

p
(0

)

P
ar

k
(1

)

T
rn

 (
H

i-Z
)

1

rd
at

a[
0]

P
ar

ity

ACK[0:2]

0 0

rd
at

a[
1]

rd
at

a[
31

]

...

...

...

T
rn

 (
H

i-Z
)

Host Packet Request Phase Target ACK and Data Transfer Phases

SWD Read Packet

SWDCK

SWDIO

SWDCK

SWDIO

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B 295

Program and Debug Interface

detects a parity error, it must abort the programming
operation and restart. For a write packet, if the target
detects a parity error, it generates a FAULT ACK
response in the next packet.

According to the SWD protocol, the host can generate any
number of SWDCK clock cycles between two packets with
SWDIO low. It is recommended to generate three or more
dummy clock cycles between two SWD packets if the clock
is not free-running or to make the clock free-running in IDLE
mode.

The SWD interface can be reset by clocking the SWDCK
line for 50 or more cycles with SWDIO high. To return to the
idle state, clock the SWDIO low once.

26.3.1 SWD Timing Details

The SWDIO line is written to and read at different times
depending on the direction of communication. The host
drives the SWDIO line during the Host Packet Request
Phase and, if the host is writing data to the target, during the
Data Transfer phase as well. When the host is driving the
SWDIO line, each new bit is written by the host on falling
SWDCK edges, and read by the target on rising SWDCK
edges. The target drives the SWDIO line during the Target
Acknowledge Response Phase and, if the target is reading
out data, during the Data Transfer Phase as well. When the
target is driving the SWDIO line, each new bit is written by
the target on rising SWDCK edges, and read by the host on
falling SWDCK edges.

Table 26-1 and Figure 26-2 illustrate the timing of SWDIO
bit writes and reads.

26.3.2 ACK Details

The acknowledge (ACK) bit-field is used to communicate
the status of the previous transfer. OK ACK means that pre-
vious packet was successful. A WAIT response requires a
data phase. For a FAULT status, the programming opera-
tion should be aborted immediately. Table 26-2 shows the
ACK bit-field decoding details.

Details on WAIT and FAULT response behaviors are as fol-
lows:

■ For a WAIT response, if the transaction is a read, the
host should ignore the data read in the data phase. The
target does not drive the line and the host must not
check the parity bit as well.

■ For a WAIT response, if the transaction is a write, the
data phase is ignored by the PSoC 4. But, the host must
still send the data to be written to complete the packet.
The parity bit corresponding to the data should also be
sent by the host.

■ For a WAIT response, it means that the PSoC 4 is pro-
cessing the previous transaction. The host can try for a
maximum of four continuous WAIT responses to see if
an OK response is received. If it fails, then the program-
ming operation should be aborted and retried again.

■ For a FAULT response, the programming operation
should be aborted and retried again by doing a device
reset.

26.3.3 Turnaround (Trn) Period Details

There is a turnaround period between the packet request
and the ACK phases, as well as between the ACK and the
data phases for host write transfers, as shown in
Figure 26-2. According to the SWD protocol, the Trn period
is used by both the host and target to change the drive
modes on their respective SWDIO lines. During the first Trn
period after the packet request, the target starts driving the
ACK data on the SWDIO line on the rising edge of SWDCK.
This ensures that the host can read the ACK data on the
next falling edge. Thus, the first Trn period lasts only one-
half cycle. The second Trn period of the SWD packet is one
and a half cycles. Neither the host nor PSoC 4 should drive
the SWDIO line during the Trn period.

26.4 Cortex-M0 Debug and
Access Port (DAP)

The Cortex-M0 program and debug interface includes a
Debug Port (DP) and an Access Port (AP), which combine
to form the DAP. The debug port implements the state
machine for the SWD interface protocol that enables com-
munication with the host device. It also includes registers for
the configuration of access port, DAP identification code,
and so on. The access port contains registers that enable
the external device to access the Cortex-M0 DAP-AHB
interface. Typically, the DP registers are used for a one time
configuration or for error detection purposes, and the AP
registers are used to perform the programming and debug-
ging operations. Complete architecture details of the DAP is
available in the ARM® Debug Interface v5 Architecture
Specification.

Table 26-1. SWDIO Bit Write and Read Timing

SWD Packet Phase
SWDIO Edge

Falling Rising

Host Packet Request
Host Write Target Read

Host Data Transfer

Target Ack Response
Host Read Target Write

Target Data Transfer

Table 26-2. SWD Transfer ACK Response Decoding

Response ACK[2:0]

OK 3b001

WAIT 3b010

FAULT 3b100

NO ACK 3b111

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0031a/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0031a/index.html

296 PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

Program and Debug Interface

26.4.1 Debug Port (DP) Registers

Table 26-3 shows the Cortex-M0 DP registers used for programming and debugging, along with the corresponding SWD
address bit selections. The APnDP bit is always zero for DP register accesses. Two address bits (A[3:2]) are used for select-
ing among the different DP registers. Note that for the same address bits, different DP registers can be accessed depending
on whether it is a read or a write operation. See the ARM® Debug Interface v5 Architecture Specification for details on all of
the DP registers.

26.4.2 Access Port (AP) Registers

Table 26-4 lists the main Cortex-M0 AP registers that are used for programming and debugging, along with the corresponding
SWD address bit selections. The APnDP bit is always one for AP register accesses. Two address bits (A[3:2]) are used for
selecting the different AP registers.

26.5 Programming the PSoC 4
Device

PSoC 4 is programmed using the following sequence. Refer
to the PSoC 4100M/4200M/4200D Device Programming
Specifications for complete details on the programming
algorithm, timing specifications, and hardware configuration
required for programming.

1. Acquire the SWD port in PSoC 4.

2. Enter the programming mode.

3. Execute the device programming routines such as Sili-
con ID Check, Flash Programming, Flash Verification,
and Checksum Verification.

26.5.1 SWD Port Acquisition

26.5.1.1 Primary and Secondary SWD Pin
Pairs

The first step in device programming is to acquire the SWD
port in PSoC 4. Refer to the device datasheet for information
on SWD pins.

If two SWD pin pairs are available in the device, the
SWD_CONFIG register in the supervisory flash region is
used to select between one of the two SWD pin pairs that
can be used for programming and debugging. Note that only
one of the SWD pin pairs can be used during any program-
ming or debugging session. The default selection for
devices coming from the factory is the primary SWD pin pair.
To select the secondary SWD pin pair, it is necessary to pro-
gram the device using the primary pair with the hex file that
enables the secondary pin pair configuration. Afterwards,
the secondary SWD pin pair may be used.

Table 26-3. Main Debug Port (DP) Registers

Register APnDP
Address

A[3:2]
RnW Full Name Register Functionality

ABORT 0 (DP) 2b00 0 (W) AP Abort Register
This register is used to force a DAP abort and to clear the
error and sticky flag conditions.

IDCODE 0 (DP) 2b00 1 (R)
Identification Code
Register

This register holds the SWD ID of the Cortex-M0 CPU, which
is 0x0BB11477.

CTRL/STAT 0 (DP) 2b01 X (R/W)
Control and Status
Register

This register allows control of the DP and contains status
information about the DP.

SELECT 0 (DP) 2b10 0 (W) AP Select Register
This register is used to select the current AP. In PSoC 4, there
is only one AP, which interfaces with the DAP AHB.

RDBUFF 0 (DP) 2b11 1 (R) Read Buffer Register This register holds the result of the last AP read operation.

Table 26-4. Main Access Port (AP) Registers

Register APnDP
Address

A[3:2]
RnW Full Name Register Functionality

CSW 1 (AP) 2b00 X (R/W)
Control and Status
Word Register
(CSW)

This register configures and controls accesses through the
memory access port to a connected memory system (which is
the PSoC 4 Memory map)

TAR 1 (AP) 2b01 X (R/W)
Transfer Address
Register

This register is used to specify the 32-bit memory address to
be read from or written to

DRW 1 (AP) 2b11 X (R/W)
Data Read and Write
Register

This register holds the 32-bit data read from or to be written to
the address specified in the TAR register

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0031a/index.html
http://www.cypress.com/?rid=111105
http://www.cypress.com/?rid=111105
http://www.cypress.com/?rID=108039

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B 297

Program and Debug Interface

26.5.1.2 SWD Port Acquire Sequence

The first step in device programming is for the host to
acquire the target's SWD port. The host first performs a
device reset by asserting the external reset (XRES) pin.
After removing the XRES signal, the host must send an
SWD connect sequence for the device within the acquire
window to connect to the SWD interface in the DAP. The
pseudo code for the sequence is given here.

Code 1. SWD Port Acquire Pseudo Code

ToggleXRES(); // Toggle XRES pin to reset
device

//Execute ARM’s connection sequence to
acquire SWD-port
do
{

SWD_LineReset(); //perform a line reset
(50+ SWDCK clocks with SWDIO high)

ack = Read_DAP (IDCODE, out ID); //Read
the IDCODE DP register

}while ((ack != OK) && time_elapsed < 1.5 ms); //
retry connection until OK ACK or timeout

if (time_elapsed >= 1.5 ms) return FAIL; //check
for acquire time out

if (ID != CM0_ID) return FAIL; //confirm SWD ID
of Cortex-M0 CPU. (0x0BB11477)

In this pseudo code, SWD_LineReset() is the standard ARM
command to reset the debug access port. It consists of more
than 49 SWDCK clock cycles with SWDIO high. The trans-
action must be completed by sending at least one SWDCK
clock cycle with SWDIO asserted LOW. This sequence syn-
chronizes the programmer and the chip. Read_DAP() refers
to the read of the IDCODE register in the debug port. The
sequence of line reset and IDCODE read should be
repeated until an OK ACK is received for the IDCODE read
or a timeout (1.5 ms) occurs. The SWD port is said to be in
the acquired state if an OK ACK is received within the time
window and the IDCODE read matches with that of the Cor-
tex-M0 DAP.

26.5.2 SWD Programming Mode Entry

After the SWD port is acquired, the host must enter the
device programming mode within a specific time window.
This is done by setting the TEST_MODE bit (bit 31) in the
test mode control register (MODE register). The debug port
should also be configured before entering the device pro-
gramming mode. Timing specifications and pseudo code for
entering the programming mode are detailed in the PSoC
4100M/4200M/4200D Device Programming Specifications
document.

26.5.3 SWD Programming Routines
Executions

When the device is in programming mode, the external pro-

grammer can start sending the SWD packet sequence for
performing programming operations such as flash erase,
flash program, checksum verification, and so on. The pro-
gramming routines are explained in the Nonvolatile Memory
Programming chapter on page 299. The exact sequence of
calling the programming routines is given in the PSoC
4100M/4200M/4200D Device Programming Specifications
document.

26.6 PSoC 4 SWD Debug
Interface

Cortex-M0 DAP debugging features are classified into two
types: invasive debugging and noninvasive debugging.
Invasive debugging includes program halting and stepping,
breakpoints, and data watchpoints. Noninvasive debugging
includes instruction address profiling and device memory
access, which includes the flash memory, SRAM, and other
peripheral registers.

The DAP has three major debug subsystems:

■ Debug Control and Configuration registers

■ Breakpoint Unit (BPU) – provides breakpoint support

■ Debug Watchpoint (DWT) – provides watchpoint sup-
port. Trace is not supported in Cortex-M0 Debug.

See the ARMv6-M Architecture Reference Manual for com-
plete details on the debug architecture.

26.6.1 Debug Control and Configuration
Registers

The debug control and configuration registers are used to
execute firmware debugging. The registers and their key
functions are as follows. See the ARMv6-M Architecture
Reference Manual for complete bit level definitions of these
registers.

■ Debug Halting Control and Status Register
(CM0_DHCSR) – This register contains the control bits
to enable debug, halt the CPU, and perform a single-
step operation. It also includes status bits for the debug
state of the processor.

■ Debug Fault Status Register (CM0_DFSR) – This regis-
ter describes the reason a debug event has occurred.
This includes debug events, which are caused by a CPU
halt, breakpoint event, or watchpoint event.

■ Debug Core Register Selector Register (CM0_DCRSR)
– This register is used to select the general-purpose reg-
ister in the Cortex-M0 CPU to which a read or write oper-
ation must be performed by the external debugger.

■ Debug Core Register Data Register (CM0_DCRDR) –
This register is used to store the data to write to or read
from the register selected in the CM0_DCRSR register.

■ Debug Exception and Monitor Control Register
(CM0_DEMCR) – This register contains the enable bits
for global debug watchpoint (DWT) block enable, reset
vector catch, and hard fault exception catch.

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0419c/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0419c/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0419c/index.html
http://www.cypress.com/?rid=111105
http://www.cypress.com/?rid=111105
http://www.cypress.com/?rid=111105
http://www.cypress.com/?rid=111105

298 PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

Program and Debug Interface

26.6.2 Breakpoint Unit (BPU)

The BPU provides breakpoint functionality on instruction
fetches. The Cortex-M0 DAP in PSoC 4 supports up to four
hardware breakpoints. Along with the hardware breakpoints,
any number of software breakpoints can be created by using
the BKPT instruction in the Cortex-M0. The BPU has two
types of registers.

■ The breakpoint control register (CM0_BP_CTRL) is used
to enable the BPU and store the number of hardware
breakpoints supported by the debug system (four for
CM0 DAP in PSoC 4).

■ Each hardware breakpoint has a Breakpoint Compare
Register (CM0_BP_COMPx). It contains the enable bit
for the breakpoint, the compare address value, and the
match condition that will trigger a breakpoint debug
event. The typical use case is that when an instruction
fetch address matches the compare address of a break-
point, a breakpoint event is generated and the processor
is halted.

26.6.3 Data Watchpoint (DWT)

The DWT provides watchpoint support on a data address
access or a program counter (PC) instruction address.
Trace is not supported by the Cortex-M0 in PSoC 4. The
DWT supports two watchpoints. It also provides external
program counter sampling using a PC sample register,
which can be used for noninvasive coarse profiling of the
program counter. The most important registers in the DWT
are as follows.

■ The watchpoint compare (CM0_DWT_COMPx) registers
store the compare values that are used by the watch-
point comparator for the generation of watchpoint
events. Each watchpoint has an associated
DWT_COMPx register.

■ The watchpoint mask (CM0_DWT_MASKx) registers
store the ignore masks applied to the address range
matching in the associated watchpoints.

■ The watchpoint function (CM0_DWT_FUNCTIONx) reg-
isters store the conditions that trigger the watchpoint
events. They may be program counter watchpoint event
or data address read/write access watchpoint events. A
status bit is also set when the associated watchpoint
event has occurred.

■ The watchpoint comparator PC sample register
(CM0_DWT_PCSR) stores the current value of the pro-
gram counter. This register is used for coarse, non-inva-
sive profiling of the program counter register.

26.6.4 Debugging the PSoC 4 Device

The host debugs the target PSoC 4 device by accessing the
debug control and configuration registers, registers in the
BPU, and registers in the DWT. All registers are accessed
through the SWD interface; the SWD debug port (SW-DP) in
the Cortex-M0 DAP converts the SWD packets to appropri-
ate register access through the DAP-AHB interface.

The first step in debugging the target PSoC 4 device is to
acquire the SWD port. The acquire sequence consists of an
SWD line reset sequence and read of the DAP SWDID
through the SWD interface. The SWD port is acquired when
the correct CM0 DAP SWDID is read from the target device.
For the debug transactions to occur on the SWD interface,
the corresponding pins should not be used for any other pur-
pose. See the I/O System chapter on page 63 to understand
how to configure the SWD port pins, allowing them to be
used only for SWD interface or for other functions such as
LCD and GPIO. If debugging is required, the SWD port pins
should not be used for other purposes. If only programming
support is needed, the SWD pins can be used for other pur-
poses.

When the SWD port is acquired, the external debugger sets
the C_DEBUGEN bit in the DHCSR register to enable
debugging. Then, the different debugging operations such
as stepping, halting, breakpoint configuration, and watch-
point configuration are carried out by writing to the appropri-
ate registers in the debug system.

Debugging the target device is also affected by the overall
device protection setting, which is explained in the Device
Security chapter on page 99. Only the OPEN protected
mode supports device debugging. Also, the external debug-
ger loses connection to the target device when the device
enters either Hibernate or Stop modes. The connection must
be re-established after the device enters the Active mode
again. The external debugger and the target device connec-
tion is not lost for a device transition from Active mode to
either Sleep or Deep-Sleep modes. When the device enters
the Active mode from either Deep-Sleep or Sleep modes,
the debugger can resume its actions without initiating a con-
nect sequence again.

26.7 Registers

Table 26-5. List of Registers

Register Name Description

CM0_DHCSR
Debug Halting Control and Status Regis-
ter

CM0_DFSR Debug Fault Status Register

CM0_DCRSR Debug Core Register Selector Register

CM0_DCRDR Debug Core Register Data Register

CM0_DEMCR
Debug Exception and Monitor Control
Register

CM0_BP_CTRL Breakpoint control register

CM0_BP_COMPx Breakpoint Compare Register

CM0_DWT_COMPx Watchpoint Compare Register

CM0_DWT_MASKx Watchpoint Mask Register

CM0_DWT_FUNCTIONx Watchpoint Function Register

CM0_DWT_PCSR
Watchpoint Comparator PC Sample Reg-
ister

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B 299

27. Nonvolatile Memory Programming

Nonvolatile memory programming refers to the programming of flash memory in the PSoC® 4 device. This chapter explains
the different functions that are part of device programming, such as erase, write, program, and checksum calculation.
Cypress-supplied programmers and other third-party programmers can use these functions to program the PSoC 4 device
with the data in an application hex file. They can also be used to perform bootload operations where the CPU will update a
portion of the flash memory.

27.1 Features
■ Supports programming through the debug and access port (DAP) and Cortex-M0 CPU

■ Supports both blocking and non-blocking flash program and erase operations from the Cortex-M0 CPU

27.2 Functional Description
Flash programming operations are implemented as system calls. System calls are executed out of SROM in the privileged
mode of operation. The user has no access to read or modify the SROM code. The DAP or the CM0 CPU requests the sys-
tem call by writing the function opcode and parameters to the System Performance Controller Interface (SPCIF) input regis-
ters, and then requesting the SROM to execute the function. Based on the function opcode, the System Performance
Controller (SPC) executes the corresponding system call from SROM and updates the SPCIF status register. The DAP or the
CPU should read this status register for the pass/fail result of the function execution. As part of function execution, the code in
SROM interacts with the SPCIF to do the actual flash programming operations.

PSoC 4 flash is programmed using a Program Erase Program (PEP) sequence. The flash cells are all programmed to a
known state, erased, and then the selected bits are programmed. This increases the life of the flash by balancing the stored
charge. When writing to flash the data is first copied to a page latch buffer. The flash write functions are then used to transfer
this data to flash.

External programmers program the flash memory in PSoC 4 using the SWD protocol by sending the commands to the Debug
and Access Port (DAP). The programming sequence for the PSoC 4 device with an external programmer is given in the
PSoC 4100M/4200M/4200D Programming Specifications. Flash memory can also be programmed by the CM0 CPU by
accessing the relevant registers through the AHB interface. This type of programming is typically used to update a portion of
the flash memory as part of a bootload operation, or other application requirements, such as updating a lookup table stored in
the flash memory. All write operations to flash memory, whether from the DAP or from the CPU, are done through the SPCIF.

Note It can take as much as 20 milliseconds to write to flash. During this time, the device should not be reset, or unexpected
changes may be made to portions of the flash. Reset sources (see the Reset System chapter on page 95) include XRES pin,
software reset, and watchdog; make sure that these are not inadvertently activated. In addition, the low-voltage detect circuits
should be configured to generate an interrupt instead of a reset.

Note PSoC 4 implements a User Supervisory Flash (SFlash), which can be used to store application-specific information.
These rows are not part of the hex file; their programming is optional.

http://www.cypress.com/?rid=111105
http://www.cypress.com/?rid=111105

300 PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

Nonvolatile Memory Programming

27.3 System Call Implementation
A system call consists of the following items:

■ Opcode: A unique 8-bit opcode

■ Parameters: Two 8-bit parameters are mandatory for all
system calls. These parameters are referred to as key1
and key2, and are defined as follows:

key1 = 0xB6

key2 = 0xD3 + Opcode

The two keys are passed to ensure that the user system
call is not initiated by mistake. If the key1 and key2
parameters are not correct, the SROM does not execute
the function, and returns an error code. Apart from these
two parameters, additional parameters may be required
depending on the specific function being called.

■ Return Values: Some system calls also return a value on
completion of their execution, such as the silicon ID or a
checksum.

■ Completion Status: Each system call returns a 32-bit sta-
tus that the CPU or DAP can read to verify success or
determine the reason for failure.

27.4 Blocking and Non-Blocking
System Calls

System call functions can be categorized as blocking or
non-blocking based on the nature of their execution. Block-
ing system calls are those where the CPU cannot execute
any other task in parallel other than the execution of the sys-
tem call. When a blocking system call is called from a pro-
cess, the CPU jumps to the code corresponding in SROM.
When the execution is complete, the original thread execu-
tion resumes. Non-blocking system calls allow the CPU to
execute some other code in parallel and communicate the
completion of interim system call tasks to the CPU through
an interrupt.

Non-blocking system calls are only used when the CPU initi-
ates the system call. The DAP will only use system calls dur-
ing the programming mode and the CPU is halted during this
process.

The three non-blocking system calls are Non-Blocking Write
Row, Non-Blocking Program Row, and Resume Non-Block-
ing, respectively. All other system calls are blocking.

Because the CPU cannot execute code from flash while
doing an erase or program operation on the flash, the non-
blocking system calls can only be called from a code execut-
ing out of SRAM. If the non-blocking functions are called
from flash memory, the result is undefined and may return a
bus error and trigger a hard fault when the flash fetch opera-
tion is being done.

The System Performance Controller (SPC) is the block that
generates the properly sequenced high-voltage pulses
required for erase and program operations of the flash mem-
ory. When a non-blocking function is called from SRAM, the
SPC timer triggers its interrupt when each of the sub-opera-
tions in a write or program operation is complete. Call the

Resume Non-Blocking function from the SPC interrupt ser-
vice routine (ISR) to ensure that the subsequent steps in the
system call are completed. Because the CPU can execute
code only from the SRAM when a non-blocking write or pro-
gram operation is being done, the SPC ISR should also be
located in the SRAM. The SPC interrupt is triggered once in
the case of a non-blocking program function or thrice in a
non-blocking write operation. The Resume Non-Blocking
function call done in the SPC ISR is called once in a non-
blocking program operation and thrice in a non-blocking
write operation.

The pseudo code for using a non-blocking write system call
and executing user code out of SRAM is given later in this
chapter.

27.4.1 Performing a System Call

The steps to initiate a system call are as follows:

1. Set up the function parameters: The two possible meth-
ods for preparing the function parameters (key1, key2,
additional parameters) are:

a. Write the function parameters to the
CPUSS_SYSARG register: This method is used for
functions that retrieve their parameters from the
CPUSS_SYSARG register. The 32-bit
CPUSS_SYSARG register must be written with the
parameters in the sequence specified in the respec-
tive system call table.

b. Write the function parameters to SRAM: This method
is used for functions that retrieve their parameters
from SRAM. The parameters should first be written in
the specified sequence to consecutive SRAM loca-
tions. Then, the starting address of the SRAM, which
is the address of the first parameter, should be writ-
ten to the CPUSS_SYSARG register. This starting
address should always be a word-aligned (32-bit)
address. The system call uses this address to fetch
the parameters.

2. Specify the system call using its opcode and initiating the
system call: The 8-bit opcode should be written to the
SYSCALL_COMMAND bits ([15:0]) in the
CPUSS_SYSREQ register. The opcode is placed in the
lower eight bits [7:0] and 0x00 be written to the upper
eight bits [15:8]. To initiate the system call, set the
SYSCALL_REQ bit (31) in the CPUSS_SYSREG regis-
ter. Setting this bit triggers a non-maskable interrupt that
jumps the CPU to the SROM code referenced by the
opcode parameter.

3. Wait for the system call to finish executing: When the
system call begins execution, it sets the PRIVILEGED bit
in the CPUSS_SYSREQ register. This bit can be set
only by the system call, not by the CPU or DAP. The
DAP should poll the PRIVILEGED and SYSCALL_REQ
bits in the CPUSS_SYSREG register continuously to
check whether the system call is completed. Both these
bits are cleared on completion of the system call. The
maximum execution time is one second. If these two bits
are not cleared after one second, the operation should
be considered a failure and aborted without executing
the following steps. Note that unlike the DAP, the CPU
application code cannot poll these bits during system call

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B 301

Nonvolatile Memory Programming

execution. This is because the CPU executes code out
of the SROM during the system call. The application
code can check only the final function pass/fail status
after the execution returns from SROM.

4. Check the completion status: After the PRIVILEGED and
SYSCALL_REQ bits are cleared to indicate completion
of the system call, the CPUSS_SYSARG register should
be read to check for the status of the system call. If the
32-bit value read from the CPUSS_SYSARG register is

0xAXXXXXXX (where ‘X’ denotes don’t care hex val-
ues), the system call was successfully executed. For a
failed system call, the status code is 0xF00000YY where
YY indicates the reason for failure. See Table 27-1 for
the complete list of status codes and their description.

5. Retrieve the return values: For system calls that return
values such as silicon ID and checksum, the CPU or
DAP should read the CPUSS_SYSREG and
CPUSS_SYSARG registers to fetch the values returned.

27.5 System Calls
Table 27-1 lists all the system calls supported in PSoC 4 along with the function description and availability in device protec-
tion modes. See the Device Security chapter on page 99 for more information on the device protection settings. Note that
some system calls cannot be called by the CPU as given in the table. Detailed information on each of the system calls follows
the table.

27.5.1 Silicon ID

This function returns a 12-bit family ID, 16-bit silicon ID, and an 8-bit revision ID, and the current device protection mode.
These values are returned to the CPUSS_SYSARG and CPUSS_SYSREQ registers. Parameters are passed through the
CPUSS_SYSARG and CPUSS_SYSREQ registers.

Parameters

Table 27-1. List of System Calls

System Call Description
DAP Access CPU

AccessOpen Protected Kill

Silicon ID Returns the device Silicon ID, Family ID, and Revision ID ✔ ✔ – ✔

Load Flash Bytes
Loads data to the page latch buffer to be programmed later into the
flash row, in 1 byte granularity, for a row size of 128 bytes

✔ – – ✔

Write Row
Erases and then programs a row of flash with data in the page latch buf-
fer

✔ – – ✔

Program Row Programs a row of flash with data in the page latch buffer ✔ – – ✔

Erase All
Erases all user code in the flash array; the flash row-level protection
data in the supervisory flash area

✔ – –

Checksum
Calculates the checksum over the entire flash memory (user and super-
visory area) or checksums a single row of flash

✔ ✔ – ✔

Write Protection
This programs both flash row-level protection settings and chip-level
protection settings into the supervisory flash (row 0)

✔ ✔ –

Non-Blocking Write Row
Erases and then programs a row of flash with data in the page latch buf-
fer. During program/erase pulses, the user may execute code from
SRAM. This function is meant only for CPU access

– – – ✔

Non-Blocking Program
Row

Programs a row of flash with data in the page latch buffer. During pro-
gram/erase pulses, the user may execute code from SRAM. This func-
tion is meant only for CPU access

– – – ✔

Resume Non-Blocking
Resumes a non-blocking write row or non-blocking program row. This
function is meant only for CPU access

– – – ✔

Address Value to be Written Description

CPUSS_SYSARG Register

Bits [7:0] 0xB6 Key1

Bits [15:8] 0xD3 Key2

302 PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

Nonvolatile Memory Programming

Return

27.5.2 Load Flash Bytes

This function loads the page latch buffer with data to be programmed into a row of flash. The load size can range from 1-byte
to the maximum number of bytes in a flash row, which is 128 bytes. Data is loaded into the page latch buffer starting at the
location specified by the “Byte Addr” input parameter. Data loaded into the page latch buffer remains until a program opera-
tion is performed, which clears the page latch contents. The parameters for this function, including the data to be loaded into
the page latch, are written to the SRAM; the starting address of the SRAM data is written to the CPUSS_SYSARG register.
Note that the starting parameter address should be a word-aligned address.

Parameters

Bits [31:16] 0x0000 Not used

CPUSS_SYSREQ register

Bits [15:0] 0x0000 Silicon ID opcode

Bits [31:16] 0x8000 Set SYSCALL_REQ bit

Address Return Value Description

CPUSS_SYSARG register

Bits [7:0] Silicon ID Lo See the device datasheet for Silicon ID values for different
part numbersBits [15:8] Silicon ID Hi

Bits [19:16] Minor Revision Id See the PSoC 4100M/4200M/4200D Programming Specifica-
tions for these valuesBits [23:20] Major Revision Id

Bits [27:24] 0xXX Not used (don’t care)

Bits [31:28] 0xA Success status code

CPUSS_SYSREQ register

Bits [11:0] Family ID
Family ID is 0x0A1 for PSoC 4200M and PSoC 4100M

Bits [15:12] Chip Protection See the Device Security chapter on page 99

Bits [31:16] 0xXXXX Not used

Address Value to be Written Description

Address Value to be Written Description

SRAM Address - 32’hYY (32-bit wide, word-aligned SRAM address)

Bits [7:0] 0xB6 Key1

Bits [15:8] 0xD7 Key2

Bits [23:16] Byte Addr

Start address of page latch buffer to write data

0x00 – Byte 0 of latch buffer

0x7F – Byte 127 of latch buffer

Bits [31:24] Flash Macro Select

0x00 – Flash Macro 0

0x01 – Flash Macro 1

(Refer to the Cortex-M0 CPU chapter on page 31 for the
number of flash macros in the device)

SRAM Address- 32’hYY + 0x04

Bits [7:0] Load Size

Number of bytes to be written to the page latch buffer.

0x00 – 1 byte

0x7F – 128 bytes

http://www.cypress.com/?rID=108039
http://www.cypress.com/?rid=111105
http://www.cypress.com/?rid=111105

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B 303

Nonvolatile Memory Programming

Return

27.5.3 Write Row

This function erases and then programs the addressed row of flash with the data in the page latch buffer. If all data in the
page latch buffer is 0, then the program is skipped. The parameters for this function are stored in SRAM. The start address of
the stored parameters is written to the CPUSS_SYSARG register. This function clears the page latch buffer contents after the
row is programmed.

Usage Requirements: Call the Load Flash Bytes function before calling this function. This function can do a write operation
only if the corresponding flash row is not write protected.

Note that this system call disables the 36-MHz IMO output before performing the flash write operation. The 36-MHz IMO out-
put can be used to source the analog switch pump or the CTBm pump. If the 36-MHz IMO output is used, it must be manually
re-enabled after the system call completes. Specifically, the CLK_IMO_CONFIG EN_CLK36 and FLASHPUMP_SEL must be
reset.

Refer to the CLK_IMO_CONFIG register in the PSoC 4100M/4200M Family: PSoC 4 Registers TRM for more information.

Parameters

Bits [15:8] 0xXX Don’t care parameter

Bits [23:16] 0xXX Don’t care parameter

Bits [31:24] 0xXX Don’t care parameter

SRAM Address- From (32’hYY + 0x08) to (32’hYY + 0x08 + Load Size)

Byte 0 Data Byte [0] First data byte to be loaded

. . .

. . .

Byte (Load size –1) Data Byte [Load size –1] Last data byte to be loaded

CPUSS_SYSARG register

Bits [31:0] 32’hYY
32-bit word-aligned address of the SRAM that stores the first
function parameter (key1)

CPUSS_SYSREQ register

Bits [15:0] 0x0004 Load Flash Bytes opcode

Bits [31:16] 0x8000 Set SYSCALL_REQ bit

Address Return Value Description

CPUSS_SYSARG register

Bits [31:28] 0xA Success status code

Bits [27:0] 0xXXXXXXX Not used (don’t care)

Address Value to be Written Description

SRAM Address: 32’hYY (32-bit wide, word-aligned SRAM address)

Bits [7:0] 0xB6 Key1

Bits [15:8] 0xD8 Key2

Bits [31:16] Row ID
Row number to write

0x0000 – Row 0

CPUSS_SYSARG register

Bits [31:0] 32’hYY
32-bit word-aligned address of the SRAM that
stores the first function parameter (key1)

CPUSS_SYSREQ register

Bits [15:0] 0x0005 Write Row opcode

Bits [31:16] 0x8000 Set SYSCALL_REQ bit

Address Value to be Written Description

http://www.cypress.com/?rid=111232

304 PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

Nonvolatile Memory Programming

Return

27.5.4 Program Row

This function programs the addressed row of the flash, with data in the page latch buffer. If all data in the page latch buffer is
0, then the program is skipped. The row must be in an erased state before calling this function. This clears the page latch buf-
fer contents after the row is programmed.

Usage Requirements: Call the Load Flash Bytes function before calling this function. The row must be in an erased state
before calling this function. This function can do a program operation only if the corresponding flash row is not write-protected.

Parameters

Return

27.5.5 Erase All

This function erases all the user code in the flash main arrays and the row-level protection data in supervisory flash row 0 of
each flash macro.

Usage Requirements: This API can be called only from the DAP in the programming mode and only if the chip protection
mode is OPEN. If the chip protection mode is PROTECTED, then the Write Protection API must be used by the DAP to
change the protection settings to OPEN. Changing the protection setting from PROTECTED to OPEN automatically does an
erase all operation.

Parameters

Address Return Value Description

CPUSS_SYSARG register

Bits [31:28] 0xA Success status code

Bits [27:0] 0xXXXXXXX Not used (don’t care)

Address Value to be Written Description

SRAM Address: 32’hYY (32-bit wide, word-aligned SRAM address)

Bits [7:0] 0xB6 Key1

Bits [15:8] 0xD9 Key2

Bits [31:16] Row ID
Row number to program

0x0000 – Row 0

CPUSS_SYSARG register

Bits [31:0] 32’hYY
32-bit word-aligned address of the SRAM that
stores the first function parameter (key1)

CPUSS_SYSREQ register

Bits [15:0] 0x0006 Program Row opcode

Bits [31:16] 0x8000 Set SYSCALL_REQ bit

Address Return Value Description

CPUSS_SYSARG register

Bits [31:28] 0xA Success status code

Bits [27:0] 0xXXXXXXX Not used (don’t care)

Address Value to be Written Description

SRAM Address: 32’hYY (32-bit wide, word-aligned SRAM address)

Bits [7:0] 0xB6 Key1

Bits [15:8] 0xDD Key2

Bits [31:16] 0xXXXX Don’t care

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B 305

Nonvolatile Memory Programming

Return

27.5.6 Checksum

This function reads either the whole flash memory or a row of flash and returns the 24-bit sum of each byte read in that flash
region. When performing a checksum on the whole flash, the user code and supervisory flash regions are included. When
performing a checksum only on one row of flash, the flash row number is passed as a parameter. Bytes 2 and 3 of the param-
eters select whether the checksum is performed on the whole flash memory or a row of user code flash.

Parameters

Return

27.5.7 Write Protection

This function programs both the flash row-level protection settings and the device protection settings in the supervisory flash
row. The flash row-level protection settings are programmed separately for each flash macro in the device. Each row has a
single protection bit. The total number of protection bytes is the number of flash rows divided by eight. The chip-level protec-
tion settings (1-byte) are stored in flash macro zero in the last byte location in row zero of the supervisory flash. The size of
the supervisory flash row is the same as the user code flash row size.

Usage Requirements: The Load Flash Bytes function is used to load the flash protection bytes of a flash macro into the page

CPUSS_SYSARG register

Bits [31:0] 32’hYY
32-bit word-aligned address of the SRAM that
stores the first function parameter (key1)

CPUSS_SYSREQ register

Bits [15:0] 0x000A Erase All opcode

Bits [31:16] 0x8000 Set SYSCALL_REQ bit

Address Return Value Description

CPUSS_SYSARG register

Bits [31:28] 0xA Success status code

Bits [27:0] 0xXXXXXXX Not used (don’t care)

Address Value to be Written Description

CPUSS_SYSARG register

Bits [7:0] 0xB6 Key1

Bits [15:8] 0xDE Key2

Bits [31:16] Row ID

Selects the flash row number on which the checksum operation is done

Row number – 16 bit flash row number

or

0x8000 – Checksum is performed on entire flash memory

CPUSS_SYSREQ register

Bits [15:0] 0x000B Checksum opcode

Bits [31:16] 0x8000 Set SYSCALL_REQ bit

Address Return Value Description

CPUSS_SYSARG register

Bits [31:28] 0xA Success status code

Bits [27:24] 0xX Not used (don’t care)

Bits [23:0] Checksum 24-bit checksum value of the selected flash region

Address Value to be Written Description

306 PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

Nonvolatile Memory Programming

latch buffer corresponding to the macro. The starting address parameter for the load function should be zero. The flash macro
number should be one that needs to be programmed; the number of bytes to load is the number of flash protection bytes in
that macro.

Then, the Write Protection function is called, which programs the flash protection bytes from the page latch to be the corre-
sponding flash macro’s supervisory row. In flash macro zero, which also stores the device protection settings, the device level
protection setting is passed as a parameter in the CPUSS_SYSARG register.

Parameters

Return

27.5.8 Non-Blocking Write Row

This function is used when a flash row needs to be written by the CM0 CPU in a non-blocking manner, so that the CPU can
execute code from SRAM while the write operation is being done. The explanation of non-blocking system calls is explained
in Blocking and Non-Blocking System Calls on page 300.

The non-blocking write row system call has three phases: Pre-program, Erase, Program. Pre-program is the step in which all
of the bits in the flash row are written a ‘1’ in preparation for an erase operation. The erase operation clears all of the bits in
the row, and the program operation writes the new data to the row.

While each phase is being executed, the CPU can execute code from SRAM. When the non-blocking write row system call is
initiated, the user cannot call any system call function other than the Resume Non-Blocking function, which is required for
completion of the non-blocking write operation. After the completion of each phase, the SPC triggers its interrupt. In this inter-
rupt, call the Resume Non-Blocking system call.

Note The device firmware must not attempt to put the device to sleep during a non-blocking write row. This will reset the
page latch buffer and the flash will be written with all zeroes.

Usage Requirements: Call the Load Flash Bytes function before calling this function to load the data bytes that will be used for
programming the row. In addition, the non-blocking write row function can be called only from the SRAM. This is because the
CM0 CPU cannot execute code from flash while doing the flash erase program operations. If this function is called from the
flash memory, the result is undefined, and may return a bus error and trigger a hard fault when the flash fetch operation is
being done.

Address Value to be Written Description

CPUSS_SYSARG register

Bits [7:0] 0xB6 Key1

Bits [15:8] 0xE0 Key2

Bits [23:16] Device Protection Byte

Parameter applicable only for Flash Macro 0

0x01 – OPEN mode

0x02 – PROTECTED mode

0x04 – KILL mode

Bits [31:24] Flash Macro Select
0x00 – Flash Macro 0

0x01 – Flash Macro 1

CPUSS_SYSREQ register

Bits [15:0] 0x000D Write Protection opcode

Bits [31:16] 0x8000 Set SYSCALL_REQ bit

Address Return Value Description

CPUSS_SYSARG register

Bits [31:28] 0xA Success status code

Bits [27:24] 0xX Not used (don’t care)

Bits [23:0] 0x000000

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B 307

Nonvolatile Memory Programming

Parameters

Return

27.5.9 Non-Blocking Program Row

This function is used when a flash row needs to be programmed by the CM0 CPU in a non-blocking manner, so that the CPU
can execute code from the SRAM when the program operation is being done. The explanation of non-blocking system calls is
explained in Blocking and Non-Blocking System Calls on page 300. While the program operation is being done, the CPU can
execute code from the SRAM. When the non-blocking program row system call is called, the user cannot call any other sys-
tem call function other than the Resume Non-Blocking function, which is required for the completion of the non-blocking write
operation.

Unlike the Non-Blocking Write Row system call, the Program system call only has a single phase. Therefore, the Resume
Non-Blocking function only needs to be called once from the SPC interrupt when using the Non-Blocking Program Row sys-
tem call.

Usage Requirements: Call the Load Flash Bytes function before calling this function to load the data bytes that will be used
for programming the row. In addition, the non-blocking program row function can be called only from SRAM. This is because
the CM0 CPU cannot execute code from flash while doing flash program operations. If this function is called from flash mem-
ory, the result is undefined, and may return a bus error and trigger a hard fault when the flash fetch operation is being done.

Parameters

Address Value to be Written Description

SRAM Address 32’hYY (32-bit wide, word-aligned SRAM address)

Bits [7:0] 0xB6 Key1

Bits [15:8] 0xDA Key2

Bits [31:16] Row ID
Row number to write

0x0000 – Row 0

CPUSS_SYSARG register

Bits [31:0] 32’hYY
32-bit word-aligned address of the SRAM that stores the first function
parameter (key1)

CPUSS_SYSREQ register

Bits [15:0] 0x0007 Non-Blocking Write Row opcode

Bits [31:16] 0x8000 Set SYSCALL_REQ bit

Address Return Value Description

CPUSS_SYSARG register

Bits [31:28] 0xA Success status code

Bits [27:0] 0xXXXXXXX Not used (don’t care)

Address Value to be Written Description

SRAM Address 32’hYY (32-bit wide, word-aligned SRAM address)

Bits [7:0] 0xB6 Key1

Bits [15:8] 0xDB Key2

Bits [31:16] Row ID
Row number to write

0x0000 – Row 0

CPUSS_SYSARG register

Bits [31:0] 32’hYY
32-bit word-aligned address of the SRAM that stores the first
function parameter (key1)

CPUSS_SYSREQ register

Bits [15:0] 0x0008 Non-Blocking Program Row opcode

Bits [31:16] 0x8000 Set SYSCALL_REQ bit

308 PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

Nonvolatile Memory Programming

Return

27.5.10 Resume Non-Blocking

This function completes the additional phases of erase and program that were started using the non-blocking write row and
non-blocking program row system calls. This function must be called thrice following a call to Non-Blocking Write Row or once
following a call to Non-Blocking Program Row from the SPC ISR. No other system calls can execute until all phases of the
program or erase operation are complete. More details on the procedure of using the non-blocking functions are explained in
Blocking and Non-Blocking System Calls on page 300.

Parameters

Return

27.6 System Call Status
At the end of every system call, a status code is written over the arguments in the CPUSS_SYSARG register. A success sta-
tus is 0xAXXXXXXX, where X indicates don’t care values or return data in the case of the system calls that return a value. A
failure status is indicated by 0xF00000XX, where XX is the failure code.

Address Return Value Description

CPUSS_SYSARG register

Bits [31:28] 0xA Success status code

Bits [27:0] 0xXXXXXXX Not used (don’t care)

Address Value to be Written Description

SRAM Address 32’hYY (32-bit wide, word-aligned SRAM address)

Bits [7:0] 0xB6 Key1

Bits [15:8] 0xDC Key2

Bits [31:16] 0xXXXX Don’t care. Not used by SROM

CPUSS_SYSARG register

Bits [31:0] 32’hYY
32-bit word-aligned address of the SRAM that stores the first
function parameter (key1)

CPUSS_SYSREQ register

Bits [15:0] 0x0009 Resume Non-Blocking opcode

Bits [31:16] 0x8000 Set SYSCALL_REQ bit

Address Return Value Description

CPUSS_SYSARG register

Bits [31:28] 0xA Success status code

Bits [27:0] 0xXXXXXXX Not used (don’t care)

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B 309

Nonvolatile Memory Programming

27.7 Non-Blocking System Call Pseudo Code
This section contains pseudo code to demonstrate how to set up a non-blocking system call and execute code out of SRAM
during the flash programming operations.

#define REG(addr) (*((volatile uint32 *) (addr)))
#define CM0_ISER_REG REG(0xE000E100)
#define CPUSS_CONFIG_REG REG(0x40100000)
#define CPUSS_SYSREQ_REG REG(0x40100004)
#define CPUSS_SYSARG_REG REG(0x40100008)

#define ROW_SIZE_128 (128)
#define ROW_SIZE (ROW_SIZE_128)

/*Variable to keep track of how many times SPC ISR is triggered */
__ram int iStatusInt = 0x00;

__flash int main(void)
{

DoUserStuff();

/*CM0 interrupt enable bit for spc interrupt enable */
CM0_ISER_REG |= 0x00000040;

/*Set CPUSS_CONFIG.VECS_IN_RAM because SPC ISR should be in SRAM */
CPUSS_CONFIG_REG |= 0x00000001;

/*Call non-blocking write row API */
NonBlockingWriteRow();

Table 27-2. System Call Status Codes

Status Code
(32-bit value in

CPUSS_SYSARG register)
Description

AXXXXXXXh
Success – The “X” denotes a don’t care value, which has a value of ‘0’ returned by the SROM, unless the
API returns parameters directly to the CPUSS_SYSARG register.

F0000001h Invalid Chip Protection Mode – This API is not available during the current chip protection mode.

F0000003h
Invalid Page Latch Address – The address within the page latch buffer is either out of bounds or the size pro-
vided is too large for the page address.

F0000004h Invalid Address – The row ID or byte address provided is outside of the available memory.

F0000005h Row Protected – The row ID provided is a protected row.

F0000007h
Resume Completed – All non-blocking APIs have completed. The resume API cannot be called until the next
non-blocking API.

F0000008h
Pending Resume – A non-blocking API was initiated and must be completed by calling the resume API,
before any other APIs may be called.

F0000009h
System Call Still In Progress – A resume or non-blocking is still in progress. The SPC ISR must fire before
attempting the next resume.

F000000Ah Checksum Zero Failed – The calculated checksum was not zero.

F000000Bh Invalid Opcode – The opcode is not a valid API opcode.

F000000Ch Key Opcode Mismatch – The opcode provided does not match key1 and key2.

F000000Eh Invalid Start Address – The start address is greater than the end address provided.

310 PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

Nonvolatile Memory Programming

/*End Program */
while(1);

}
__sram void SpcIntHandler(void)
{

/* Write key1, key2 parameters to SRAM */
REG(0x20000000) = 0x0000DCB6;

/*Write the address of key1 to the CPUSS_SYSARG reg */
CPUSS_SYSARG_REG = 0x20000000;

/*Write the API opcode = 0x09 to the CPUSS_SYSREQ.COMMAND
* register and assert the sysreq bit
*/
CPUSS_SYSREQ_REG = 0x80000009;

/* Number of times the ISR has triggered */
iStatusInt ++;

}
__sram void NonBlockingWriteRow(void)
{

int iter;

/*Load the Flash page latch with data to write*/
* Write key1, key2, byte address, and macro sel parameters to SRAM
*/
REG(0x20000000) = 0x0000D7B6;

//Write load size param (128 bytes) to SRAM
REG(0x20000004) = 0x0000007F;

for(i = 0; i < ROW_SIZE/4; i += 1)
{

REG(0x20000008 + i*4) = 0xDADADADA;
}

/*Write the address of the key1 param to CPUSS_SYSARG reg*/
CPUSS_SYSARG_REG = 0x20000000;

/*Write the API opcode = 0x04 to CPUSS_SYSREQ.COMMAND
* register and assert the sysreq bit
*/
CPUSS_SYSREQ_REG = 0x80000004;

/*Perform Non-Blocking Write Row on Row 200 as an example.
* Write key1, key2, row id to SRAM row id = 0xC8 -> which is row 200
*/
REG(0x20000000) = 0x00C8DAB6;

/*Write the address of the key1 param to CPUSS_SYSARG reg */
CPUSS_SYSARG_REG = 0x20000000;

/*Write the API opcode = 0x07 to CPUSS_SYSREQ.COMMAND
* register and assert the sysreq bit
*/
CPUSS_SYSREQ_REG = 0x80000007;

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B 311

Nonvolatile Memory Programming

/*Execute user code until iStatusInt equals 3 to signify
* 3 SPC interrupts have happened. This should be 1 in case
* of non-blocking program System Call
*/
while(iStatusInt != 0x03)
{

DoOtherUserStuff();
}

/* Get the success or failure status of System Call*/
syscall_status = CPUSS_SYSARG_REG;

}

In the code, the CM0 exception table is configured to be in SRAM by writing 0x01 to the CPUSS_CONFIG register. The
SRAM exception table should have the vector address of the SPC interrupt as the address of the SpcIntHandler() function,
which is also defined to be in SRAM. See the Interrupts chapter on page 51 for details on configuring the CM0 exception table
to be in SRAM. The pseudo code for a non-blocking program system call is also similar, except that the function opcode and
parameters will differ and the iStatusInt variable should be polled for 1 instead of 3. This is because the SPC ISR will be trig-
gered only once for a non-blocking program system call.

312 PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

Nonvolatile Memory Programming

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B 313

Glossary

The Glossary section explains the terminology used in this technical reference manual. Glossary terms are characterized in
bold, italic font throughout the text of this manual.

A

accumulator In a CPU, a register in which intermediate results are stored. Without an accumulator, it is neces-
sary to write the result of each calculation (addition, subtraction, shift, and so on.) to main mem-
ory and read them back. Access to main memory is slower than access to the accumulator,
which usually has direct paths to and from the arithmetic and logic unit (ALU).

active high 1. A logic signal having its asserted state as the logic 1 state.

2. A logic signal having the logic 1 state as the higher voltage of the two states.

active low 1. A logic signal having its asserted state as the logic 0 state.

2. A logic signal having its logic 1 state as the lower voltage of the two states: inverted logic.

address The label or number identifying the memory location (RAM, ROM, or register) where a unit of
information is stored.

algorithm A procedure for solving a mathematical problem in a finite number of steps that frequently
involve repetition of an operation.

ambient temperature The temperature of the air in a designated area, particularly the area surrounding the PSoC
device.

analog See analog signals.

analog blocks The basic programmable opamp circuits. These are SC (switched capacitor) and CT (continuous
time) blocks. These blocks can be interconnected to provide ADCs, DACs, multi-pole filters, gain
stages, and much more.

analog output An output that is capable of driving any voltage between the supply rails, instead of just a logic 1
or logic 0.

analog signals A signal represented in a continuous form with respect to continuous times, as contrasted with a
digital signal represented in a discrete (discontinuous) form in a sequence of time.

analog-to-digital (ADC) A device that changes an analog signal to a digital signal of corresponding magnitude. Typically,
an ADC converts a voltage to a digital number. The digital-to-analog (DAC) converter performs
the reverse operation.

Glossary

314 PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

AND See Boolean Algebra.

API (Application Pro-
gramming Interface)

A series of software routines that comprise an interface between a computer application and
lower-level services and functions (for example, user modules and libraries). APIs serve as build-
ing blocks for programmers that create software applications.

array An array, also known as a vector or list, is one of the simplest data structures in computer pro-
gramming. Arrays hold a fixed number of equally-sized data elements, generally of the same
data type. Individual elements are accessed by index using a consecutive range of integers, as
opposed to an associative array. Most high-level programming languages have arrays as a built-
in data type. Some arrays are multi-dimensional, meaning they are indexed by a fixed number of
integers; for example, by a group of two integers. One- and two-dimensional arrays are the most
common. Also, an array can be a group of capacitors or resistors connected in some common
form.

assembly A symbolic representation of the machine language of a specific processor. Assembly language
is converted to machine code by an assembler. Usually, each line of assembly code produces
one machine instruction, though the use of macros is common. Assembly languages are consid-
ered low-level languages; where as C is considered a high-level language.

asynchronous A signal whose data is acknowledged or acted upon immediately, irrespective of any clock sig-
nal.

attenuation The decrease in intensity of a signal as a result of absorption of energy and of scattering out of
the path to the detector, but not including the reduction due to geometric spreading. Attenuation
is usually expressed in dB.

B

bandgap reference A stable voltage reference design that matches the positive temperature coefficient of VT with the
negative temperature coefficient of VBE, to produce a zero temperature coefficient (ideally) refer-
ence.

bandwidth 1. The frequency range of a message or information processing system measured in hertz.

2. The width of the spectral region over which an amplifier (or absorber) has substantial gain (or
loss); it is sometimes represented more specifically as, for example, full width at half maxi-
mum.

bias 1. A systematic deviation of a value from a reference value.

2. The amount by which the average of a set of values departs from a reference value.

3. The electrical, mechanical, magnetic, or other force (field) applied to a device to establish a
reference level to operate the device.

bias current The constant low-level DC current that is used to produce a stable operation in amplifiers. This
current can sometimes be changed to alter the bandwidth of an amplifier.

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B 315

Glossary

binary The name for the base 2 numbering system. The most common numbering system is the base
10 numbering system. The base of a numbering system indicates the number of values that may
exist for a particular positioning within a number for that system. For example, in base 2, binary,
each position may have one of two values (0 or 1). In the base 10, decimal, numbering system,
each position may have one of ten values (0, 1, 2, 3, 4, 5, 6, 7, 8, and 9).

bit A single digit of a binary number. Therefore, a bit may only have a value of ‘0’ or ‘1’. A group of 8
bits is called a byte. Because the PSoC's M8CP is an 8-bit microcontroller, the PSoC devices's
native data chunk size is a byte.

bit rate (BR) The number of bits occurring per unit of time in a bit stream, usually expressed in bits per second
(bps).

block 1. A functional unit that performs a single function, such as an oscillator.

2. A functional unit that may be configured to perform one of several functions, such as a digital
PSoC block or an analog PSoC block.

Boolean Algebra In mathematics and computer science, Boolean algebras or Boolean lattices, are algebraic struc-
tures which "capture the essence" of the logical operations AND, OR and NOT as well as the set
theoretic operations union, intersection, and complement. Boolean algebra also defines a set of
theorems that describe how Boolean equations can be manipulated. For example, these theo-
rems are used to simplify Boolean equations, which will reduce the number of logic elements
needed to implement the equation.

The operators of Boolean algebra may be represented in various ways. Often they are simply
written as AND, OR, and NOT. In describing circuits, NAND (NOT AND), NOR (NOT OR), XNOR
(exclusive NOT OR), and XOR (exclusive OR) may also be used. Mathematicians often use +
(for example, A+B) for OR and for AND (for example, A*B) (in some ways those operations are
analogous to addition and multiplication in other algebraic structures) and represent NOT by a
line drawn above the expression being negated (for example, ~A, A_, !A).

break-before-make The elements involved go through a disconnected state entering (‘break”) before the new con-
nected state (“make”).

broadcast net A signal that is routed throughout the microcontroller and is accessible by many blocks or sys-
tems.

buffer 1. A storage area for data that is used to compensate for a speed difference, when transferring
data from one device to another. Usually refers to an area reserved for I/O operations, into
which data is read, or from which data is written.

2. A portion of memory set aside to store data, often before it is sent to an external device or as
it is received from an external device.

3. An amplifier used to lower the output impedance of a system.

bus 1. A named connection of nets. Bundling nets together in a bus makes it easier to route nets
with similar routing patterns.

2. A set of signals performing a common function and carrying similar data. Typically repre-
sented using vector notation; for example, address[7:0].

3. One or more conductors that serve as a common connection for a group of related devices.

byte A digital storage unit consisting of 8 bits.

Glossary

316 PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

C

C A high-level programming language.

capacitance A measure of the ability of two adjacent conductors, separated by an insulator, to hold a charge
when a voltage differential is applied between them. Capacitance is measured in units of Farads.

capture To extract information automatically through the use of software or hardware, as opposed to
hand-entering of data into a computer file.

chaining Connecting two or more 8-bit digital blocks to form 16-, 24-, and even 32-bit functions. Chaining
allows certain signals such as Compare, Carry, Enable, Capture, and Gate to be produced from
one block to another.

checksum The checksum of a set of data is generated by adding the value of each data word to a sum. The
actual checksum can simply be the result sum or a value that must be added to the sum to gen-
erate a pre-determined value.

clear To force a bit/register to a value of logic ‘0’.

clock The device that generates a periodic signal with a fixed frequency and duty cycle. A clock is
sometimes used to synchronize different logic blocks.

clock generator A circuit that is used to generate a clock signal.

CMOS The logic gates constructed using MOS transistors connected in a complementary manner.
CMOS is an acronym for complementary metal-oxide semiconductor.

comparator An electronic circuit that produces an output voltage or current whenever two input levels simul-
taneously satisfy predetermined amplitude requirements.

compiler A program that translates a high-level language, such as C, into machine language.

configuration In a computer system, an arrangement of functional units according to their nature, number, and
chief characteristics. Configuration pertains to hardware, software, firmware, and documentation.
The configuration will affect system performance.

configuration space In PSoC devices, the register space accessed when the XIO bit, in the CPU_F register, is set to
‘1’.

crowbar A type of over-voltage protection that rapidly places a low-resistance shunt (typically an SCR)
from the signal to one of the power supply rails, when the output voltage exceeds a predeter-
mined value.

CPUSS CPU subsystem

crystal oscillator An oscillator in which the frequency is controlled by a piezoelectric crystal. Typically a piezoelec-
tric crystal is less sensitive to ambient temperature than other circuit components.

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B 317

Glossary

cyclic redundancy
check (CRC)

A calculation used to detect errors in data communications, typically performed using a linear
feedback shift register. Similar calculations may be used for a variety of other purposes such as
data compression.

D

data bus A bi-directional set of signals used by a computer to convey information from a memory location
to the central processing unit and vice versa. More generally, a set of signals used to convey
data between digital functions.

data stream A sequence of digitally encoded signals used to represent information in transmission.

data transmission Sending data from one place to another by means of signals over a channel.

debugger A hardware and software system that allows the user to analyze the operation of the system
under development. A debugger usually allows the developer to step through the firmware one
step at a time, set break points, and analyze memory.

dead band A period of time when neither of two or more signals are in their active state or in transition.

decimal A base-10 numbering system, which uses the symbols 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9 (called digits)
together with the decimal point and the sign symbols + (plus) and - (minus) to represent num-
bers.

default value Pertaining to the pre-defined initial, original, or specific setting, condition, value, or action a sys-
tem will assume, use, or take in the absence of instructions from the user.

device The device referred to in this manual is the PSoC device, unless otherwise specified.

die An non-packaged integrated circuit (IC), normally cut from a wafer.

digital A signal or function, the amplitude of which is characterized by one of two discrete values: ‘0’ or
‘1’.

digital blocks The 8-bit logic blocks that can act as a counter, timer, serial receiver, serial transmitter, CRC gen-
erator, pseudo-random number generator, or SPI.

digital logic A methodology for dealing with expressions containing two-state variables that describe the
behavior of a circuit or system.

digital-to-analog (DAC) A device that changes a digital signal to an analog signal of corresponding magnitude. The ana-
log-to-digital (ADC) converter performs the reverse operation.

direct access The capability to obtain data from a storage device, or to enter data into a storage device, in a
sequence independent of their relative positions by means of addresses that indicate the physi-
cal location of the data.

duty cycle The relationship of a clock period high time to its low time, expressed as a percent.

Glossary

318 PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

E

External Reset
(XRES_N)

An active high signal that is driven into the PSoC device. It causes all operation of the CPU and
blocks to stop and return to a pre-defined state.

F

falling edge A transition from a logic 1 to a logic 0. Also known as a negative edge.

feedback The return of a portion of the output, or processed portion of the output, of a (usually active)
device to the input.

filter A device or process by which certain frequency components of a signal are attenuated.

firmware The software that is embedded in a hardware device and executed by the CPU. The software
may be executed by the end user, but it may not be modified.

flag Any of various types of indicators used for identification of a condition or event (for example, a
character that signals the termination of a transmission).

Flash An electrically programmable and erasable, volatile technology that provides users with the pro-
grammability and data storage of EPROMs, plus in-system erasability. Nonvolatile means that
the data is retained when power is off.

Flash bank A group of flash ROM blocks where flash block numbers always begin with ‘0’ in an individual
flash bank. A flash bank also has its own block level protection information.

Flash block The smallest amount of flash ROM space that may be programmed at one time and the smallest
amount of flash space that may be protected. A flash block holds 64 bytes.

flip-flop A device having two stable states and two input terminals (or types of input signals) each of
which corresponds with one of the two states. The circuit remains in either state until it is made to
change to the other state by application of the corresponding signal.

frequency The number of cycles or events per unit of time, for a periodic function.

G

gain The ratio of output current, voltage, or power to input current, voltage, or power, respectively.
Gain is usually expressed in dB.

gate 1. A device having one output channel and one or more input channels, such that the output
channel state is completely determined by the input channel states, except during switching
transients.

2. One of many types of combinational logic elements having at least two inputs (for example,
AND, OR, NAND, and NOR (also see Boolean Algebra)).

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B 319

Glossary

ground 1. The electrical neutral line having the same potential as the surrounding earth.

2. The negative side of DC power supply.

3. The reference point for an electrical system.

4. The conducting paths between an electric circuit or equipment and the earth, or some con-
ducting body serving in place of the earth.

H

hardware A comprehensive term for all of the physical parts of a computer or embedded system, as distin-
guished from the data it contains or operates on, and the software that provides instructions for
the hardware to accomplish tasks.

hardware reset A reset that is caused by a circuit, such as a POR, watchdog reset, or external reset. A hardware
reset restores the state of the device as it was when it was first powered up. Therefore, all regis-
ters are set to the POR value as indicated in register tables throughout this document.

hexadecimal A base 16 numeral system (often abbreviated and called hex), usually written using the symbols
0-9 and A-F. It is a useful system in computers because there is an easy mapping from four bits
to a single hex digit. Thus, one can represent every byte as two consecutive hexadecimal digits.
Compare the binary, hex, and decimal representations:

bin = hex = dec

0000b = 0x0 = 0

0001b = 0x1 = 1

0010b = 0x2 = 2

...

1001b = 0x9 = 9

1010b = 0xA = 10

1011b = 0xB = 11

...

1111b = 0xF = 15

So the decimal numeral 79 whose binary representation is 0100 1111b can be written as 4Fh in
hexadecimal (0x4F).

high time The amount of time the signal has a value of ‘1’ in one period, for a periodic digital signal.

Glossary

320 PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

I

I2C A two-wire serial computer bus by Phillips Semiconductors (now NXP Semiconductors). I2C is an
Inter-Integrated Circuit. It is used to connect low-speed peripherals in an embedded system. The
original system was created in the early 1980s as a battery control interface, but it was later used
as a simple internal bus system for building control electronics. I2C uses only two bidirectional
pins, clock and data, both running at +5 V and pulled high with resistors. The bus operates at 100
Kbps in standard mode and 400 Kbps in fast mode.

idle state A condition that exists whenever user messages are not being transmitted, but the service is
immediately available for use.

impedance 1. The resistance to the flow of current caused by resistive, capacitive, or inductive devices in a
circuit.

2. The total passive opposition offered to the flow of electric current. Note the impedance is
determined by the particular combination of resistance, inductive reactance, and capacitive
reactance in a given circuit.

input A point that accepts data, in a device, process, or channel.

input/output (I/O) A device that introduces data into or extracts data from a system.

instruction An expression that specifies one operation and identifies its operands, if any, in a programming
language such as C or assembly.

instruction mnemonics A set of acronyms that represent the opcodes for each of the assembly-language instructions, for
example, ADD, SUBB, MOV.

integrated circuit (IC) A device in which components such as resistors, capacitors, diodes, and transistors are formed
on the surface of a single piece of semiconductor.

interface The means by which two systems or devices are connected and interact with each other.

interrupt A suspension of a process, such as the execution of a computer program, caused by an event
external to that process, and performed in such a way that the process can be resumed.

interrupt service rou-
tine (ISR)

A block of code that normal code execution is diverted to when the M8CP receives a hardware
interrupt. Many interrupt sources may each exist with its own priority and individual ISR code
block. Each ISR code block ends with the RETI instruction, returning the device to the point in
the program where it left normal program execution.

J

jitter 1. A misplacement of the timing of a transition from its ideal position. A typical form of corruption
that occurs on serial data streams.

2. The abrupt and unwanted variations of one or more signal characteristics, such as the inter-
val between successive pulses, the amplitude of successive cycles, or the frequency or
phase of successive cycles.

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B 321

Glossary

L

latency The time or delay that it takes for a signal to pass through a given circuit or network.

least significant bit
(LSb)

The binary digit, or bit, in a binary number that represents the least significant value (typically the
right-hand bit). The bit versus byte distinction is made by using a lower case “b” for bit in LSb.

least significant byte
(LSB)

The byte in a multi-byte word that represents the least significant values (typically the right-hand
byte). The byte versus bit distinction is made by using an upper case “B” for byte in LSB.

Linear Feedback Shift
Register (LFSR)

A shift register whose data input is generated as an XOR of two or more elements in the register
chain.

load The electrical demand of a process expressed as power (watts), current (amps), or resistance
(ohms).

logic function A mathematical function that performs a digital operation on digital data and returns a digital
value.

lookup table (LUT) A logic block that implements several logic functions. The logic function is selected by means of
select lines and is applied to the inputs of the block. For example: A 2 input LUT with 4 select
lines can be used to perform any one of 16 logic functions on the two inputs resulting in a single
logic output. The LUT is a combinational device; therefore, the input/output relationship is contin-
uous, that is, not sampled.

low time The amount of time the signal has a value of ‘0’ in one period, for a periodic digital signal.

low-voltage detect
(LVD)

A circuit that senses VDDD and provides an interrupt to the system when VDDD falls below a
selected threshold.

M

M8CP An 8-bit Harvard Architecture microprocessor. The microprocessor coordinates all activity inside
a PSoC device by interfacing to the flash, SRAM, and register space.

macro A programming language macro is an abstraction, whereby a certain textual pattern is replaced
according to a defined set of rules. The interpreter or compiler automatically replaces the macro
instance with the macro contents when an instance of the macro is encountered. Therefore, if a
macro is used five times and the macro definition required 10 bytes of code space, 50 bytes of
code space will be needed in total.

mask 1. To obscure, hide, or otherwise prevent information from being derived from a signal. It is usu-
ally the result of interaction with another signal, such as noise, static, jamming, or other forms
of interference.

2. A pattern of bits that can be used to retain or suppress segments of another pattern of bits, in
computing and data processing systems.

Glossary

322 PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

master device A device that controls the timing for data exchanges between two devices. Or when devices are
cascaded in width, the master device is the one that controls the timing for data exchanges
between the cascaded devices and an external interface. The controlled device is called the
slave device.

microcontroller An integrated circuit device that is designed primarily for control systems and products. In addi-
tion to a CPU, a microcontroller typically includes memory, timing circuits, and I/O circuitry. The
reason for this is to permit the realization of a controller with a minimal quantity of devices, thus
achieving maximal possible miniaturization. This in turn, will reduce the volume and the cost of
the controller. The microcontroller is normally not used for general-purpose computation as is a
microprocessor.

mnemonic A tool intended to assist the memory. Mnemonics rely on not only repetition to remember facts,
but also on creating associations between easy-to-remember constructs and lists of data. A two
to four character string representing a microprocessor instruction.

mode A distinct method of operation for software or hardware. For example, the Digital PSoC block
may be in either counter mode or timer mode.

modulation A range of techniques for encoding information on a carrier signal, typically a sine-wave signal. A
device that performs modulation is known as a modulator.

Modulator A device that imposes a signal on a carrier.

MOS An acronym for metal-oxide semiconductor.

most significant bit
(MSb)

The binary digit, or bit, in a binary number that represents the most significant value (typically the
left-hand bit). The bit versus byte distinction is made by using a lower case “b” for bit in MSb.

most significant byte
(MSB)

The byte in a multi-byte word that represents the most significant values (typically the left-hand
byte). The byte versus bit distinction is made by using an upper case “B” for byte in MSB.

multiplexer (mux) 1. A logic function that uses a binary value, or address, to select between a number of inputs
and conveys the data from the selected input to the output.

2. A technique which allows different input (or output) signals to use the same lines at different
times, controlled by an external signal. Multiplexing is used to save on wiring and I/O ports.

N

NAND See Boolean Algebra.

negative edge A transition from a logic 1 to a logic 0. Also known as a falling edge.

net The routing between devices.

nibble A group of four bits, which is one-half of a byte.

noise 1. A disturbance that affects a signal and that may distort the information carried by the signal.

2. The random variations of one or more characteristics of any entity such as voltage, current,
or data.

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B 323

Glossary

NOR See Boolean Algebra.

NOT See Boolean Algebra.

O

OR See Boolean Algebra.

oscillator A circuit that may be crystal controlled and is used to generate a clock frequency.

output The electrical signal or signals which are produced by an analog or digital block.

P

parallel The means of communication in which digital data is sent multiple bits at a time, with each simul-
taneous bit being sent over a separate line.

parameter Characteristics for a given block that have either been characterized or may be defined by the
designer.

parameter block A location in memory where parameters for the SSC instruction are placed prior to execution.

parity A technique for testing transmitting data. Typically, a binary digit is added to the data to make the
sum of all the digits of the binary data either always even (even parity) or always odd (odd parity).

path 1. The logical sequence of instructions executed by a computer.

2. The flow of an electrical signal through a circuit.

pending interrupts An interrupt that is triggered but not serviced, either because the processor is busy servicing
another interrupt or global interrupts are disabled.

phase The relationship between two signals, usually the same frequency, that determines the delay
between them. This delay between signals is either measured by time or angle (degrees).

pin A terminal on a hardware component. Also called lead.

pinouts The pin number assignment: the relation between the logical inputs and outputs of the PSoC
device and their physical counterparts in the printed circuit board (PCB) package. Pinouts will
involve pin numbers as a link between schematic and PCB design (both being computer gener-
ated files) and may also involve pin names.

port A group of pins, usually eight.

positive edge A transition from a logic 0 to a logic 1. Also known as a rising edge.

posted interrupts An interrupt that is detected by the hardware but may or may not be enabled by its mask bit.
Posted interrupts that are not masked become pending interrupts.

Glossary

324 PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

Power On Reset (POR) A circuit that forces the PSoC device to reset when the voltage is below a pre-set level. This is
one type of hardware reset.

program counter The instruction pointer (also called the program counter) is a register in a computer processor
that indicates where in memory the CPU is executing instructions. Depending on the details of
the particular machine, it holds either the address of the instruction being executed, or the
address of the next instruction to be executed.

protocol A set of rules. Particularly the rules that govern networked communications.

PSoC® Cypress’s Programmable System-on-Chip (PSoC®) devices.

PSoC blocks See analog blocks and digital blocks.

PSoC Creator™ The software for Cypress’s next generation Programmable System-on-Chip technology.

pulse A rapid change in some characteristic of a signal (for example, phase or frequency), from a base-
line value to a higher or lower value, followed by a rapid return to the baseline value.

pulse width modulator
(PWM)

An output in the form of duty cycle which varies as a function of the applied measure.

R

RAM An acronym for random access memory. A data-storage device from which data can be read out
and new data can be written in.

register A storage device with a specific capacity, such as a bit or byte.

reset A means of bringing a system back to a know state. See hardware reset and software reset.

resistance The resistance to the flow of electric current measured in ohms for a conductor.

revision ID A unique identifier of the PSoC device.

ripple divider An asynchronous ripple counter constructed of flip-flops. The clock is fed to the first stage of the
counter. An n-bit binary counter consisting of n flip-flops that can count in binary from 0 to 2n - 1.

rising edge See positive edge.

ROM An acronym for read only memory. A data-storage device from which data can be read out, but
new data cannot be written in.

routine A block of code, called by another block of code, that may have some general or frequent use.

routing Physically connecting objects in a design according to design rules set in the reference library.

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B 325

Glossary

runt pulses In digital circuits, narrow pulses that, due to non-zero rise and fall times of the signal, do not
reach a valid high or low level. For example, a runt pulse may occur when switching between
asynchronous clocks or as the result of a race condition in which a signal takes two separate
paths through a circuit. These race conditions may have different delays and are then recom-
bined to form a glitch or when the output of a flip-flop becomes metastable.

S

sampling The process of converting an analog signal into a series of digital values or reversed.

schematic A diagram, drawing, or sketch that details the elements of a system, such as the elements of an
electrical circuit or the elements of a logic diagram for a computer.

seed value An initial value loaded into a linear feedback shift register or random number generator.

serial 1. Pertaining to a process in which all events occur one after the other.

2. Pertaining to the sequential or consecutive occurrence of two or more related activities in a
single device or channel.

set To force a bit/register to a value of logic 1.

settling time The time it takes for an output signal or value to stabilize after the input has changed from one
value to another.

shift The movement of each bit in a word one position to either the left or right. For example, if the hex
value 0x24 is shifted one place to the left, it becomes 0x48. If the hex value 0x24 is shifted one
place to the right, it becomes 0x12.

shift register A memory storage device that sequentially shifts a word either left or right to output a stream of
serial data.

sign bit The most significant binary digit, or bit, of a signed binary number. If set to a logic 1, this bit rep-
resents a negative quantity.

signal A detectable transmitted energy that can be used to carry information. As applied to electronics,
any transmitted electrical impulse.

silicon ID A unique identifier of the PSoC silicon.

skew The difference in arrival time of bits transmitted at the same time, in parallel transmission.

slave device A device that allows another device to control the timing for data exchanges between two
devices. Or when devices are cascaded in width, the slave device is the one that allows another
device to control the timing of data exchanges between the cascaded devices and an external
interface. The controlling device is called the master device.

software A set of computer programs, procedures, and associated documentation about the operation of a
data processing system (for example, compilers, library routines, manuals, and circuit diagrams).
Software is often written first as source code, and then converted to a binary format that is spe-
cific to the device on which the code will be executed.

Glossary

326 PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

software reset A partial reset executed by software to bring part of the system back to a known state. A software
reset will restore the M8CP to a know state but not PSoC blocks, systems, peripherals, or regis-
ters. For a software reset, the CPU registers (CPU_A, CPU_F, CPU_PC, CPU_SP, and CPU_X)
are set to 0x00. Therefore, code execution will begin at flash address 0x0000.

SRAM An acronym for static random access memory. A memory device allowing users to store and
retrieve data at a high rate of speed. The term static is used because, when a value is loaded
into an SRAM cell, it will remain unchanged until it is explicitly altered or until power is removed
from the device.

SROM An acronym for supervisory read only memory. The SROM holds code that is used to boot the
device, calibrate circuitry, and perform flash operations. The functions of the SROM may be
accessed in normal user code, operating from flash.

stack A stack is a data structure that works on the principle of Last In First Out (LIFO). This means that
the last item put on the stack is the first item that can be taken off.

stack pointer A stack may be represented in a computer’s inside blocks of memory cells, with the bottom at a
fixed location and a variable stack pointer to the current top cell.

state machine The actual implementation (in hardware or software) of a function that can be considered to con-
sist of a set of states through which it sequences.

sticky A bit in a register that maintains its value past the time of the event that caused its transition, has
passed.

stop bit A signal following a character or block that prepares the receiving device to receive the next
character or block.

switching The controlling or routing of signals in circuits to execute logical or arithmetic operations, or to
transmit data between specific points in a network.

switch phasing The clock that controls a given switch, PHI1 or PHI2, in respect to the switch capacitor (SC)
blocks. The PSoC SC blocks have two groups of switches. One group of these switches is nor-
mally closed during PHI1 and open during PHI2. The other group is open during PHI1 and closed
during PHI2. These switches can be controlled in the normal operation, or in reverse mode if the
PHI1 and PHI2 clocks are reversed.

synchronous 1. A signal whose data is not acknowledged or acted upon until the next active edge of a clock
signal.

2. A system whose operation is synchronized by a clock signal.

T

tap The connection between two blocks of a device created by connecting several blocks/compo-
nents in a series, such as a shift register or resistive voltage divider.

terminal count The state at which a counter is counted down to zero.

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B 327

Glossary

threshold The minimum value of a signal that can be detected by the system or sensor under consider-
ation.

Thumb-2 The Thumb-2 instruction set is a highly efficient and powerful instruction set that delivers signifi-
cant benefits in terms of ease of use, code size, and performance. The Thumb-2 instruction set is
a superset of the previous 16-bit Thumb instruction set, with additional 16-bit instructions along-
side 32-bit instructions.

transistors The transistor is a solid-state semiconductor device used for amplification and switching, and
has three terminals: a small current or voltage applied to one terminal controls the current
through the other two. It is the key component in all modern electronics. In digital circuits, transis-
tors are used as very fast electrical switches, and arrangements of transistors can function as
logic gates, RAM-type memory, and other devices. In analog circuits, transistors are essentially
used as amplifiers.

tristate A function whose output can adopt three states: 0, 1, and Z (high impedance). The function does
not drive any value in the Z state and, in many respects, may be considered to be disconnected
from the rest of the circuit, allowing another output to drive the same net.

U

UART A UART or universal asynchronous receiver-transmitter translates between parallel bits of data
and serial bits.

user The person using the PSoC device and reading this manual.

user modules Pre-build, pre-tested hardware/firmware peripheral functions that take care of managing and
configuring the lower level Analog and Digital PSoC Blocks. User Modules also provide high
level API (Application Programming Interface) for the peripheral function.

user space The bank 0 space of the register map. The registers in this bank are more likely to be modified
during normal program execution and not just during initialization. Registers in bank 1 are most
likely to be modified only during the initialization phase of the program.

V

VDDD A name for a power net meaning "voltage drain." The most positive power supply signal. Usually
5 or 3.3 volts.

volatile Not guaranteed to stay the same value or level when not in scope.

VSS A name for a power net meaning "voltage source." The most negative power supply signal.

Glossary

328 PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

W

watchdog timer A timer that must be serviced periodically. If it is not serviced, the CPU will reset after a specified
period of time.

waveform The representation of a signal as a plot of amplitude versus time.

X

XOR See Boolean Algebra.

PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B 329

Index

A
active mode

PSoC . 88
analog I/O . 71

B
block diagram

program and debug interface 293
watchdog timer circuit . 91

brownout reset . 95

C
clock distribution . 77
clock sources

distribution . 77
clocking system

introduction . 73
Cortex-M0

features . 31
instruction set . 34
registers . 33

D
development kits . 23
document

glossary . 313
revision history . 15

E
exception

HardFault . 54
NMI . 54
PendSV . 54
reset . 53
SVCall . 54
SysTick . 54

external reset . 96

F
features

I/O system .63
watchdog timer .91

G
glossary .313
GPIO pins in creation of buttons and sliders 71

H
hibernate mode .89
Hibernate wakeup reset .96
high impedance analog drive mode 66
high impedance digital drive mode66
how it works

watchdog timer .92

I
I/O drive mode

high impedance analog .66
high impedance digital .66
open drain .66
resistive .66
strong .66

I/O system
analog I/O .71
CapSense .71
features .63
introduction .63
LCD drive capabilities .71
open drain modes .66
register summary .72
resistive modes .66
slew rate control .66
strong drive mode .66

identifying reset sources .96
internal low speed oscillator .76
internal main oscillator .74
internal regulators .81
introduction

clock generator .73
I/O system .63
reset .95
successive approximation register analog to digital con-

vertor .221

330 PSoC 4100M/4200M Family PSoC 4 Architecture TRM, Document No. 001-95223 Rev. *B

L
LCD drive

I/O system capabilities . 71

O
oscillators

internal PSoC . 74
overview, document

revision history . 15

P
power on reset . 95
program and debug

PSoC . 21
protection fault reset . 96
PSoC

active mode . 88
program and debug . 21

R
register summary

I/O system . 72
registers

Cortex-M0 . 33
regulator

internal . 81
reset

identifying sources . 96
introduction . 95

reset sources
description . 95

revision history . 15

S
SAR ADC

introduction . 221
sleep mode . 88
slew rate control in I/O system . 66
software initiated reset . 96
stop wakeup reset . 96
support . 23
SWD interface

program and debug interface 294
system call

overview . 300

U
upgrades . 23

W
watchdog reset . 95
watchdog timer

disabling . 93
enabling . 93
features . 91
how it works . 92
interrupts . 94
operating modes . 93

	PSoC 4 TRM
	Contents Overview
	Contents
	Section A: Overview
	Document Revision History
	1. Introduction
	1.1 Top Level Architecture
	1.2 Features
	1.3 CPU System
	1.3.1 Processor
	1.3.2 Interrupt Controller
	1.3.3 Direct Memory Access

	1.4 Memory
	1.4.1 Flash
	1.4.2 SRAM

	1.5 System-Wide Resources
	1.5.1 Clocking System
	1.5.2 Power System
	1.5.3 GPIO

	1.6 Programmable Digital
	1.7 Fixed-Function Digital
	1.7.1 Timer/Counter/PWM Block
	1.7.2 Serial Communication Blocks
	1.7.3 Controller Area Network

	1.8 Analog System
	1.8.1 SAR ADC
	1.8.2 Continuous Time Block mini (CTBm)
	1.8.3 Low-Power Comparators

	1.9 Special Function Peripherals
	1.9.1 LCD Segment Drive
	1.9.2 CapSense
	1.9.2.1 IDACs and Comparator

	1.10 Program and Debug
	1.11 Device Feature Summary

	2. Getting Started
	2.1 Support
	2.2 Product Upgrades
	2.3 Development Kits
	2.4 Application Notes

	3. Document Construction
	3.1 Major Sections
	3.2 Documentation Conventions
	3.2.1 Register Conventions
	3.2.2 Numeric Naming
	3.2.3 Units of Measure
	3.2.4 Acronyms

	Section B: CPU System
	Top Level Architecture
	4. Cortex-M0 CPU
	4.1 Features
	4.2 Block Diagram
	4.3 How It Works
	4.4 Address Map
	4.5 Registers
	4.6 Operating Modes
	4.7 Instruction Set
	4.7.1 Address Alignment
	4.7.2 Memory Endianness

	4.8 Systick Timer
	4.9 Debug

	5. DMA Controller Modes
	5.1 Block Diagram Description
	5.1.1 Trigger Sources and Multiplexing
	5.1.1.1 Trigger Multiplexer
	5.1.1.2 Creating Software Triggers

	5.1.2 Pending Triggers
	5.1.3 Output Triggers
	5.1.4 Channel Prioritization
	5.1.5 Data Transfer Engine

	5.2 Descriptors
	5.2.1 Address Configuration
	5.2.2 Transfer Size
	5.2.3 Descriptor Chaining
	5.2.4 Transfer Mode
	5.2.4.1 Single Data Element Per Trigger (OPCODE 0)
	5.2.4.2 Entire Descriptor Per Trigger (OPCODE 1)
	5.2.4.3 Entire Descriptor Chain Per Trigger (OPCODE 2)

	5.2.5 Operation and Timing

	5.3 Register List

	6. Interrupts
	6.1 Features
	6.2 How It Works
	6.3 Interrupts and Exceptions - Operation
	6.3.1 Interrupt/Exception Handling in PSoC 4
	6.3.2 Level and Pulse Interrupts
	6.3.3 Exception Vector Table

	6.4 Exception Sources
	6.4.1 Reset Exception
	6.4.2 Non-Maskable Interrupt (NMI) Exception
	6.4.3 HardFault Exception
	6.4.4 Supervisor Call (SVCall) Exception
	6.4.5 PendSV Exception
	6.4.6 SysTick Exception

	6.5 Interrupt Sources
	6.6 Exception Priority
	6.7 Enabling and Disabling Interrupts
	6.8 Exception States
	6.8.1 Pending Exceptions

	6.9 Stack Usage for Exceptions
	6.10 Interrupts and Low-Power Modes
	6.11 Exception - Initialization and Configuration
	6.12 Registers
	6.13 Associated Documents

	Section C: System-Wide Resources
	Top Level Architecture
	7. I/O System
	7.1 Features
	7.2 GPIO Interface Overview
	7.3 I/O Cell Architecture
	7.3.1 Digital Input Buffer
	7.3.2 Digital Output Driver
	7.3.2.1 Drive Modes
	7.3.2.2 Slew Rate Control

	7.4 GPIO-OVT Pin
	7.5 High-Speed I/O Matrix
	7.6 I/O State on Power Up
	7.7 Behavior in Low-Power Modes
	7.8 Input and Output Synchronization
	7.9 Interrupt
	7.10 Peripheral Connections
	7.10.1 Firmware Controlled GPIO
	7.10.2 Analog I/O
	7.10.3 LCD Drive
	7.10.4 CapSense
	7.10.5 Serial Communication Block (SCB)

	7.11 Port Restrictions
	7.12 Registers

	8. Clocking System
	8.1 Block Diagram
	8.2 Clock Sources
	8.2.1 Internal Main Oscillator
	8.2.1.1 Startup Behavior
	8.2.1.2 IMO Frequency Spread
	8.2.1.3 Programming Clock (36-MHz)

	8.2.2 Internal Low-speed Oscillator
	8.2.3 External Clock (EXTCLK)
	8.2.4 Watch Crystal Oscillator (WCO)

	8.3 Clock Distribution
	8.3.1 HFCLK Input Selection
	8.3.2 LFCLK Input Selection
	8.3.3 SYSCLK Prescaler Configuration
	8.3.4 Peripheral Clock Divider Configuration

	8.4 Low-Power Mode Operation
	8.5 Register List

	9. Power Supply and Monitoring
	9.1 Block Diagram
	9.2 How It Works
	9.2.1 Regulator Summary
	9.2.1.1 Active Digital Regulator
	9.2.1.2 Quiet Regulator
	9.2.1.3 Deep-Sleep Regulator
	9.2.1.4 Hibernate Regulator

	9.3 Voltage Monitoring
	9.3.1 Power-On-Reset (POR)
	9.3.1.1 Brownout-Detect (BOD)
	9.3.1.2 Low-Voltage-Detect (LVD)

	9.4 Register List

	10. Chip Operational Modes
	10.1 Boot
	10.2 User
	10.3 Privileged
	10.4 Debug

	11. Power Modes
	11.1 Active Mode
	11.2 Sleep Mode
	11.3 Deep-Sleep Mode
	11.4 Hibernate Mode
	11.5 Stop Mode
	11.6 Power Mode Summary
	11.7 Low-Power Mode Entry and Exit
	11.8 Register List

	12. Watchdog Timer
	12.1 Features
	12.2 Block Diagram
	12.3 How It Works
	12.3.1 Enabling and Disabling WDT
	12.3.2 WDT Operating Modes
	12.3.3 WDT Interrupts and Low-Power Modes
	12.3.4 WDT Reset Mode

	12.4 Register List

	13. Reset System
	13.1 Reset Sources
	13.1.1 Power-on Reset
	13.1.2 Brownout Reset
	13.1.3 Watchdog Reset
	13.1.4 Software Initiated Reset
	13.1.5 External Reset
	13.1.6 Protection Fault Reset
	13.1.7 Hibernate Wakeup Reset
	13.1.8 Stop Wakeup Reset

	13.2 Identifying Reset Sources
	13.3 Register List

	14. Device Security
	14.1 Features
	14.2 How It Works
	14.2.1 Device Security
	14.2.2 Flash Security

	Section D: Digital System
	Top Level Architecture
	15. Serial Communications Block (SCB)
	15.1 Features
	15.2 Serial Peripheral Interface (SPI)
	15.2.1 Features
	15.2.2 General Description
	15.2.3 SPI Modes of Operation
	15.2.3.1 Motorola SPI
	15.2.3.2 Texas Instruments SPI
	15.2.3.3 National Semiconductors SPI

	15.2.4 Using SPI Master to Clock Slave
	15.2.5 Easy SPI Protocol
	15.2.5.1 EZ Address Write
	15.2.5.2 Memory Array Write
	15.2.5.3 Memory Array Read
	15.2.5.4 Configuring SCB for EZSPI Mode

	15.2.6 SPI Registers
	15.2.7 SPI Interrupts
	15.2.8 Enabling and Initializing SPI
	15.2.9 Internally and Externally Clocked SPI Operations
	15.2.9.1 Non-EZ Mode of Operation
	15.2.9.2 EZ Mode of Operation

	15.3 UART
	15.3.1 Features
	15.3.2 General Description
	15.3.3 UART Modes of Operation
	15.3.3.1 Standard Protocol
	15.3.3.2 SmartCard (ISO7816)
	15.3.3.3 IrDA

	15.3.4 UART Registers
	15.3.5 UART Interrupts
	15.3.6 Enabling and Initializing UART

	15.4 Inter Integrated Circuit (I2C)
	15.4.1 Features
	15.4.2 General Description
	15.4.3 Terms and Definitions
	15.4.3.1 Clock Stretching
	15.4.3.2 Bus Arbitration

	15.4.4 I2C Modes of Operation
	15.4.4.1 Write Transfer
	15.4.4.2 Read Transfer

	15.4.5 Easy I2C (EZI2C) Protocol
	15.4.5.1 Memory Array Write
	15.4.5.2 Memory Array Read

	15.4.6 I2C Registers
	15.4.7 I2C Interrupts
	15.4.8 Enabling and Initializing the I2C
	15.4.8.1 Configuring for I2C Standard (Non- EZ) Mode
	15.4.8.2 Configuring for EZI2C Mode

	15.4.9 Internal and External Clock Operation in I2C
	15.4.9.1 I2C Non-EZ Mode of Operation
	15.4.9.2 I2C EZ Operation Mode

	15.4.10 Wake up from Sleep
	15.4.11 Master Mode Transfer Examples
	15.4.11.1 Master Transmit
	15.4.11.2 Master Receive

	15.4.12 Slave Mode Transfer Examples
	15.4.12.1 Slave Transmit
	15.4.12.2 Slave Receive

	15.4.13 EZ Slave Mode Transfer Example
	15.4.13.1 EZ Slave Transmit
	15.4.13.2 EZ Slave Receive

	15.4.14 Multi-Master Mode Transfer Example
	15.4.14.1 Multi-Master - Slave Not Enabled
	15.4.14.2 Multi-Master - Slave Enabled

	16. Universal Digital Blocks (UDB)
	16.1 Features
	16.2 How It Works
	16.2.1 PLDs
	16.2.1.1 PLD Macrocells
	16.2.1.2 PLD Carry Chain
	16.2.1.3 PLD Configuration

	16.2.2 Datapath
	16.2.2.1 Overview
	16.2.2.2 Datapath FIFOs
	16.2.2.3 FIFO Status
	16.2.2.4 Datapath ALU
	16.2.2.5 Datapath Inputs and Multiplexing
	16.2.2.6 CRC/PRS Support
	16.2.2.7 Datapath Outputs and Multiplexing
	16.2.2.8 Datapath Parallel Inputs and Outputs
	16.2.2.9 Datapath Chaining
	16.2.2.10 Dynamic Configuration RAM

	16.2.3 Status and Control Module
	16.2.3.1 Status and Control Mode
	16.2.3.2 Control Register Operation
	16.2.3.3 Parallel Input/Output Mode
	16.2.3.4 Counter Mode
	16.2.3.5 Sync Mode
	16.2.3.6 Status and Control Clocking
	16.2.3.7 Auxiliary Control Register
	16.2.3.8 Status and Control Register Summary

	16.2.4 Reset and Clock Control Module
	16.2.4.1 Clock Control
	16.2.4.2 Reset Control
	16.2.4.3 UDB POR Initialization

	16.2.5 UDB Addressing
	16.2.6 System Bus Access Coherency
	16.2.6.1 Simultaneous System Bus Access
	16.2.6.2 Coherent Accumulator Access (Atomic Reads and Writes)

	16.3 Port Adapter Block
	16.3.1 PA Data Input Logic
	16.3.2 PA Port Pin Clock Multiplexer Logic
	16.3.3 PA Data Output Logic
	16.3.4 PA Output Enable Logic
	16.3.5 PA Clock Multiplexer
	16.3.6 PA Reset Multiplexer

	17. Controller Area Network (CAN)
	17.1 Features
	17.2 Block Diagram
	17.3 CAN Message Frames
	17.3.1 Data Frames
	17.3.1.1 Standard Data Frame
	17.3.1.2 Extended Data Frame

	17.3.2 Remote Frame
	17.3.3 Error Frame
	17.3.4 Overload Frame

	17.4 Transmitting Messages in CAN
	17.4.1 Message Arbitration
	17.4.2 Message Transmit Process
	17.4.3 Message Abort
	17.4.4 Single Shot Transmission
	17.4.5 Transmitting Extended Data Frames

	17.5 Receiving Messages in CAN
	17.5.1 Message Receive Process
	17.5.2 Acceptance Filter
	17.5.2.1 Example

	17.5.3 DeviceNet Filtering
	17.5.4 Filtering of Extended Data Frames
	17.5.5 Receiver Message Buffer Linking

	17.6 Remote Frames
	17.6.1 Transmitting a Remote Frame by the Requesting Node
	17.6.2 Receiving a Remote Frame
	17.6.3 RTR Auto Reply
	17.6.4 Remote Frames in Extended Format

	17.7 Time-Triggered CAN
	17.7.1 TTCAN Timer

	17.8 Bit Time Configuration
	17.8.1 Allowable Bit Rates and System Clock (SYSCLK)
	17.8.2 Setting Bit Rate TSEG1 and TSEG2
	17.8.2.1 Example

	17.9 Error Handling and Interrupts in CAN
	17.9.1 Types of Errors
	17.9.1.1 BIT Error
	17.9.1.2 FORM Error
	17.9.1.3 ACKNOWLEDGE Error
	17.9.1.4 CRC Error
	17.9.1.5 STUFF Error

	17.9.2 Error Capture Register
	17.9.3 Error States in CAN
	17.9.4 Interrupt Sources in CAN
	17.9.4.1 Core Interrupts from CAN
	17.9.4.2 Interrupt Routing with TT_ENABLE = 1

	17.10 Operating Modes in CAN
	17.10.1 Run/Stop Mode
	17.10.2 Listen Only Mode
	17.10.3 Loopback Test Mode
	17.10.3.1 External Loopback Mode
	17.10.3.2 Internal Loopback Mode

	18. Timer, Counter, and PWM
	18.1 Features
	18.2 Block Diagram
	18.2.1 Enabling and Disabling Counter in TCPWM Block
	18.2.2 Clocking
	18.2.3 Events Based on Trigger Inputs
	18.2.4 Output Signals
	18.2.4.1 Signals upon Trigger Conditions
	18.2.4.2 Interrupts
	18.2.4.3 Outputs

	18.2.5 Power Modes

	18.3 Modes of Operation
	18.3.1 Timer Mode
	18.3.1.1 Block Diagram
	18.3.1.2 How It Works
	18.3.1.3 Configuring Counter for Timer Mode

	18.3.2 Capture Mode
	18.3.2.1 Block Diagram
	18.3.2.2 How it Works
	18.3.2.3 Configuring Counter for Capture Mode

	18.3.3 Quadrature Decoder Mode
	18.3.3.1 Block Diagram
	18.3.3.2 How It Works
	18.3.3.3 Configuring Counter for Quadrature Mode

	18.3.4 Pulse Width Modulation Mode
	18.3.4.1 Block Diagram
	18.3.4.2 How It Works
	18.3.4.3 Other Configurations
	18.3.4.4 Kill Feature
	18.3.4.5 Configuring Counter for PWM Mode

	18.3.5 Pulse Width Modulation with Dead Time Mode
	18.3.5.1 Block Diagram
	18.3.5.2 How It Works
	18.3.5.3 Configuring Counter for PWM with Dead Time Mode

	18.3.6 Pulse Width Modulation Pseudo-Random Mode
	18.3.6.1 Block Diagram
	18.3.6.2 How It Works
	18.3.6.3 Configuring Counter for Pseudo- Random PWM Mode

	18.4 TCPWM Registers

	Section E: Analog System
	Top Level Architecture
	19. Precision Reference
	19.1 Features
	19.2 Block Diagram
	19.3 How it Works
	19.3.1 Precision Bandgap
	19.3.2 Trim Buffer
	19.3.3 Low-Power Buffers
	19.3.4 Current Mirrors
	19.3.5 Temperature-Controlled Voltage Generator
	19.3.6 Temperature-Controlled Current Generator

	19.4 Configuration

	20. SAR ADC
	20.1 Features
	20.2 Block Diagram
	20.3 How it Works
	20.3.1 SAR ADC Core
	20.3.1.1 Single-ended and Differential Mode
	20.3.1.2 Input Range
	20.3.1.3 Result Data Format
	20.3.1.4 Negative Input Selection
	20.3.1.5 Resolution
	20.3.1.6 Acquisition Time
	20.3.1.7 SAR ADC Clock
	20.3.1.8 SAR ADC Timing

	20.3.2 SARMUX
	20.3.2.1 Analog Routing
	20.3.2.2 Analog Interconnection

	20.3.3 SARREF
	20.3.3.1 Reference Options
	20.3.3.2 Bypass Capacitors
	20.3.3.3 Input Range versus Reference

	20.3.4 SARSEQ
	20.3.4.1 Averaging
	20.3.4.2 Range Detection
	20.3.4.3 Double Buffer
	20.3.4.4 Injection Channel

	20.3.5 Interrupt
	20.3.5.1 End-of-Scan Interrupt (EOS_INTR)
	20.3.5.2 Overflow Interrupt
	20.3.5.3 Collision Interrupt
	20.3.5.4 Injection End-of-Conversion Interrupt (INJ_EOC_INTR)
	20.3.5.5 Range Detection Interrupts
	20.3.5.6 Saturate Detection Interrupts
	20.3.5.7 Interrupt Cause Overview

	20.3.6 Trigger
	20.3.6.1 DSI Trigger Configuration

	20.3.7 SAR ADC Status
	20.3.8 Low-Power Mode
	20.3.9 System Operation
	20.3.10 Register Mode
	20.3.10.1 SARMUX Analog Routing
	20.3.10.2 Global SARSEQ Configuration
	20.3.10.3 Channel Configurations
	20.3.10.4 Channel Enables
	20.3.10.5 Interrupt Masks
	20.3.10.6 Trigger
	20.3.10.7 Retrieve Data after Each Interrupt
	20.3.10.8 Injection Conversions

	20.3.11 DSI Mode
	20.3.11.1 Firmware Analog Routing
	20.3.11.2 DSI Analog Routing
	20.3.11.3 Global SARSEQ Configuration
	20.3.11.4 DSI Channel Configuration
	20.3.11.5 Interrupt
	20.3.11.6 Trigger
	20.3.11.7 Retrieve Data
	20.3.11.8 DSI Output Enable

	20.3.12 Analog Routing Configuration Example
	20.3.13 Temperature Sensor Configuration

	20.4 Registers

	21. Low-Power Comparator
	21.1 Features
	21.2 Block Diagram
	21.3 How It Works
	21.3.1 Input Configuration
	21.3.2 Output and Interrupt Configuration
	21.3.3 Power Mode and Speed Configuration
	21.3.4 Hysteresis
	21.3.5 Wakeup from Low-Power Modes
	21.3.6 Comparator Clock
	21.3.7 Offset Trim

	21.4 Register Summary

	22. Continuous Time Block mini (CTBm)
	22.1 Features
	22.2 Block Diagram
	22.3 How It Works
	22.3.1 Power Mode Configuration
	22.3.2 Output Strength Configuration
	22.3.3 Compensation
	22.3.4 Switch Control
	22.3.4.1 Input Configuration
	22.3.4.2 Output Configuration
	22.3.4.3 Comparator Mode
	22.3.4.4 Comparator Configuration
	22.3.4.5 Comparator Interrupt
	22.3.4.6 Deep-Sleep Mode Operation

	22.4 Register Summary

	23. LCD Direct Drive
	23.1 Features
	23.2 LCD Segment Drive Overview
	23.2.1 Drive Modes
	23.2.1.1 PWM Drive
	23.2.1.2 Digital Correlation

	23.2.2 Recommended Usage of Drive Modes
	23.2.3 Digital Contrast Control

	23.3 Block Diagram
	23.3.1 How it Works
	23.3.2 High-Speed and Low-Speed Master Generators
	23.3.3 Multiplexer and LCD Pin Logic
	23.3.4 Display Data Registers

	23.4 Register List

	24. CapSense
	24.1 Features
	24.2 Block Diagram
	24.3 How It Works
	24.4 CapSense CSD Sensing
	24.4.1 GPIO Cell Capacitance to Current Converter
	24.4.2 CapSense Clock Generator
	24.4.3 Sigma Delta Converter

	24.5 CapSense CSD Shielding
	24.5.1 CMOD Precharge

	24.6 General-Purpose Resources: IDACs and Comparator
	24.7 Register List

	25. Temperature Sensor
	25.1 Features
	25.2 How it Works
	25.3 Temperature Sensor Configuration
	25.4 Algorithm
	25.5 Registers

	Section F: Program and Debug
	Top Level Architecture
	26. Program and Debug Interface
	26.1 Features
	26.2 Functional Description
	26.3 Serial Wire Debug (SWD) Interface
	26.3.1 SWD Timing Details
	26.3.2 ACK Details
	26.3.3 Turnaround (Trn) Period Details

	26.4 Cortex-M0 Debug and Access Port (DAP)
	26.4.1 Debug Port (DP) Registers
	26.4.2 Access Port (AP) Registers

	26.5 Programming the PSoC 4 Device
	26.5.1 SWD Port Acquisition
	26.5.1.1 Primary and Secondary SWD Pin Pairs
	26.5.1.2 SWD Port Acquire Sequence

	26.5.2 SWD Programming Mode Entry
	26.5.3 SWD Programming Routines Executions

	26.6 PSoC 4 SWD Debug Interface
	26.6.1 Debug Control and Configuration Registers
	26.6.2 Breakpoint Unit (BPU)
	26.6.3 Data Watchpoint (DWT)
	26.6.4 Debugging the PSoC 4 Device

	26.7 Registers

	27. Nonvolatile Memory Programming
	27.1 Features
	27.2 Functional Description
	27.3 System Call Implementation
	27.4 Blocking and Non-Blocking System Calls
	27.4.1 Performing a System Call

	27.5 System Calls
	27.5.1 Silicon ID
	27.5.2 Load Flash Bytes
	27.5.3 Write Row
	27.5.4 Program Row
	27.5.5 Erase All
	27.5.6 Checksum
	27.5.7 Write Protection
	27.5.8 Non-Blocking Write Row
	27.5.9 Non-Blocking Program Row
	27.5.10 Resume Non-Blocking

	27.6 System Call Status
	27.7 Non-Blocking System Call Pseudo Code

	Glossary
	Index

